期刊文献+

公共政策仿真方法:原理、应用与前景 被引量:31

Public Policy Simulation Approach: its Applications and Prospects
下载PDF
导出
摘要 从方法论的视角讨论了公共政策仿真的ABM方法原理、应用和前景。学界就社会科学研究应该遵循的方法论问题一直存在着不同取向的争论,在就此形成的认识论连续统的框架下,社会仿真的诸多概念模型也都有各自在"通则论-个体论"的连续统中的位置,而目前公共政策仿真的ABM方法无疑在这样的连续统中占据着重要地位。公共政策过程的复杂性制约了传统研究方法的效果,而基于场景分析的公共政策系统分析和基于机制的政策主体行为分析使公共政策仿真的ABM方法突破了传统研究方法的窠臼,通过科学的建模技术以及严谨的检验环节,结合政策结果的3D场景呈现和群决策平台,为公共政策领域开创了独具科学性和人本性的激动人心的应用前景。 This paper explores an ABM simulation approach and its applications and prospects in public policy.The debate on knowledge claims of social sciences is still unsolved.With the continuum of epistemological approaches,social simulation studies take their own 'nomothetic-idiographic' position,while no doubt the ABM simulation approach in public policy occupies an important position.The complexity of the process of public policy restricts the effectiveness of traditional research methods.The scenario-based system analysis of public policy systems and mechanisms-based analysis of agents make the ABM approach break through the traditional research methods.With scientific modeling technology,rigorous testing session,3D presentation of policy outcomes,and group decision making platform,the ABM simulation approach provides unique scientific and humane exciting prospects in public policy area.
出处 《公共管理学报》 CSSCI 2011年第4期8-20,122-123,共13页 Journal of Public Management
基金 国家自然科学基金项目(71073037)
关键词 公共政策 仿真 方法论 连续统 基于主体建模 Public Policy Simulation Methodology Continuum Agent-Based Modeling
  • 相关文献

参考文献20

  • 1HOLLAND J H, MILLER J H. Artificial Adaptive Agents in Economic Theory[J].American Economic Review, 1991, 81 (2):365-71.
  • 2RICE A K. Productivity and Social Organization: The Amadabad Experiment [ M ]. London: Tavistock, 1958.
  • 3TRIST E L, HIGGIN G W, MURRAY H, et al. Organizational Choice [M]. London: Tavistock, 1963.
  • 4HEDSTROM P. Dissecting the Social: on the Principles of Analytical Sociology [M]. Cambridge: Cambridge University Press, 2005: 20.
  • 5GILBERT G N, TROITZSCH K G. Simulation for the Social Scientist [ M ]. New York: Open University Press, 2005 : 7.
  • 6MEADOWS D L, BEHRENS III W W, MEADOWS D H, et aI. The Dynamics of Growth in a Finite World [ M ]. Cambridge, MA: MIT Press, 1974.
  • 7MEADOWS D H, MEADOWS D L, RANDERS J. Beyond the Limits [M]. Post Mills, VT: Chelsea Green, 1992.
  • 8TOFFOLI T, MARGOLUS N. Cellular Automata Machines [M]. Cambridge, MA: MIT Press, 1987.
  • 9DORAN J E. Foreknowledge in Artificial Societies [M]// CONTE R, HEGSELMANN R, TERNA P. Simulating Social Phenomena. Berlin : Springer-Verlag, 1997 : 457-470.
  • 10MICHALSKI R, CARBONELL J, MITCHELL T M. Machine Learning: An Artificial Intelligence Approach [M]. Palo Alto, CA.:Tioga, 1983.

二级参考文献12

  • 1A. N. Whitehead and B. Russell, Principia Mathematica, Cambridge Univ. Press, 1927.
  • 2L. Bull and T, Kovacs, Foundations of Learning Classifier Systems, Springer, 2005.
  • 3P. L. Lanzi, W. Stolzmann and S. W. Wilson, Learning Classifier Systems, Springer, 2000.
  • 4J. H. Holland, K. J. Holyoak, R. E. Nisbett and P. R. Thagard, Induction: Processes of Inference,Learning, and Discovery (2nd Edition), MIT Press, 1989, 71-75.
  • 5L. Booker, S. Forrest, M. Mitchell and R. Riolo, Perspectives on Adapatation in Natural and Artificial Systems, Oxford Univ. Press, 2005.
  • 6J. H. Holland, Hidden Order: How Adaptation Builds Complexity, Addison-Wesley, 1995. Chinese translation: Shanghai Scientific & Technological Education Publishing, 2000.
  • 7L. Bull, Applications of Learning Classifier Systems, Springer, 2004.
  • 8J. von Neumann, Theory of Self-Reproducing Automata, Univ. Illinois Press, 1966.
  • 9J. H. Holland, Hidden Order: How Adaptation Builds Complezity, Chapter 3, Addison-Wesley,1995. Chinese translation,Shanghai Scientific & Technological Education Publishing House, 2000.
  • 10F. J. Odling-Smee, K. N. Laland, M. W. Feldman, Niche Construction: The Neglected Process in Evolution, Princeton Univ. Press, 2003.

共引文献49

同被引文献405

引证文献31

二级引证文献180

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部