期刊文献+

基于聚类分析的申贷信用等级评价方法 被引量:1

The method based on clustering analysis to evaluate the credit rating of loan application
原文传递
导出
摘要 为了解决申贷信用等级评价问题,介绍了解决银行申请贷款信用等级评价中聚类分析采用的基本概念及术语,提出了2种聚类算法包括基于信贷数据的聚类算法δ-kmeans;基于高维信贷数据的聚类算法ASC,并通过实验对其性能进行比较分析,实验表明:①δ-kmeans算法在信贷风险的控制上取得较好效果;②相比传统k-means和Coweb算法,ASC算法在聚类高维信贷数据上更加有效.利用k-means算法对银行信贷数据的聚类动力学关系进行分析.最后,给出了聚类分析算法在银行信贷领域应用的的难点. To solve the problem of credit rating of loan application, this paper introduces the basic concepts and preliminaries of clustering analysis employed in this study to handle the problem of estimation on the loan grade of clients, and presents two kinds of clustering algorithms for solving this problem. One clustering approach is based on credit data, called δ - kmeans, and the other approach can be applied to high dimensional credit data, called ASC. Extensive experiments were conducted to compare the performance between the proposed two algorithms. The experiments show that δ - kmeans algorithm achieves better results in credit risk control, but the ASC algorithm is more effective than traditional k -means algorithms and the Coweb algorithm in clustering high dimensional credit data. In addition, this paper analyzes the dynamics of cluster analysis on bank credit data in terms of the k -means algorithm.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第6期639-644,共6页 Journal of Yunnan University(Natural Sciences Edition)
基金 中国博士后科学基金资助项目(20090461346) 贵州省科技厅自然科学基金资助项目([2010]2096) 遵义市科技局自然科学基金资助项目([2009]27)
关键词 信贷风险 高维聚类 聚类动力学 挖掘算法 credit risk high dimensional clustering cluster dynamics mining algorithm
  • 相关文献

参考文献14

  • 1于剑 肖宇.聚类分析.中国计算机学会通讯,2009,1518(8):23-29.
  • 2YU Jian. General c - means clustering model [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence,2005,27 ( 8 ) : 1 197-1 211.
  • 3FREY B J, DUECK D. Clustering by passing messages between data points [ J ]. Science, 2007,315 ( 5814 ) : 972 -976.
  • 4HEYER L J, KRUGLYAK S, YOOSEPH S. Exploring ex- pression data:Identification and analysis of eoexpressed genes[ J]. Genome Research,9 : 1 106-1 115.
  • 5GIRVAN M, NEWMAN M E J. Community structure in social and biological networks [ J ]. Proc Natl Acxcad Sci USA ,99,2002:7 821-7 826.
  • 6DHILLON I S, MALLELA S, MODHA D S. Information - theoretic co - clustering[ C ]. Proceedings of the 26th Annual International ACM SIGIR Conference on Re- search and Development in Information Retrieval,2003: 89-98.
  • 7杨春宇,周杰.一种混合属性数据流聚类算法[J].计算机学报,2007,30(8):1364-1371. 被引量:22
  • 8高崇南,余宏亮,郑纬民.一种自动推断复杂系统层次结构任务模型的方法[J].计算机学报,2010,33(1):119-127. 被引量:3
  • 9张有东,曾庆凯,王建东.网络协同取证计算研究[J].计算机学报,2010,33(3):504-513. 被引量:18
  • 10邢熠,叶新铭,谢高岗.路由协议的符号化测试生成[J].计算机学报,2010,33(3):589-595. 被引量:2

二级参考文献85

共引文献41

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部