摘要
利用数论中同余的性质研究丢番图方程x3±8=Dy2(D=D1p,D是无平方因子的正整数,其中D1是不能被3或6k+1之形的素数整除的正整数,p是正奇素数)的解的情况,证明了当D1=3,7(mod8),p=3(8k+7)(8k+8)+1时,方程x3+8=Dy2无正整数解;当D1=7(mod8),p=3(8k+5)(8k+6)+1时,x3-8=Dy2无正整数解。
Using the property of congruence in Number theory,the solutions of Diophantine equation x3±8=Dy2 are in-vestigated,where D is square-free positive integer,D=D1p,D1 cannot exact divided by the prime number 3 or 6k+1,andpis an positive odd prime.It is proved that if D1=3,7(mod8),p=3(8k+7)(8k+8)+1,the equation x3+8=Dy2 hasno positive integer solution,if D1=7(mod8),p=3(8k+5)(8k+6)+1,the equation x3-8=Dy2 has no positive integersolution.
出处
《四川理工学院学报(自然科学版)》
CAS
2011年第5期593-595,共3页
Journal of Sichuan University of Science & Engineering(Natural Science Edition)
关键词
丢番图方程
正整数解
奇素数
Diophantine equation
positive integer solution
odd prime