期刊文献+

求解TSP的新量子蚁群算法 被引量:16

Novel quantum ant colony algorithm for TSP
下载PDF
导出
摘要 鉴于蚁群算法(ACA)在求解TSP时表现出的优越性,以及量子进化算法(QEA)在求解组合优化问题时表现出的高效性,将ACA与QEA的算法思想进行融合,提出一种新的求解TSP的量子蚁群算法。该算法对各路径上的信息素进行量子比特编码,设计了一种新的信息素表示方式,即量子信息素;采用量子旋转门及最优路径对信息素进行更新,加快算法收敛速度;为了避免搜索陷入局部最优,设计了一种量子交叉策略,以改善种群信息结构。仿真实验结果表明了该算法具有较快的收敛速度和全局寻优能力,性能明显优于ACS。 Ant Colony Algorithm (ACA) demonstrates the superiority in solving TSP, and Quantum Evolution Algorithm (QEA) has the performance of high efficiency on combinational optimization problems, so combining the thought of ACA with QEA,a novel quantum ant colony algorithm for TSP is proposed.In this algorithm,the pheromone on each path is encoded by a group of quantum bits, and a new pheromone representation is designed, called quantum pheromone.The quantum rotation gate and the best tour are applied to update the pheromone so as to accelerate its convergence speed.To avoid the search falling into local optimum, the strategy of quantum crossover is designed to improve the information structure of population.Simulation results show that the algorithm has fast convergence speed and global optimal ability,and the algorithm is more effective than ACS.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第32期42-44,86,共4页 Computer Engineering and Applications
基金 安徽省自然科学基金(No.090412072)
关键词 量子进化 蚁群算法 旅行商问题(TSP) 组合优化 quantum evolution ant colony algorithm Traveling Salesman Problem(TSP) combinational optimization
  • 相关文献

参考文献9

  • 1Li Zhiyong,Wang Yong,Chan Jun,et al.The cloud-based frame- work for ant colony optimization[C]//Proceedings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computa- tion, Shanghai, China, 2009: 279-286.
  • 2Demeyer S, De Leenheer M, Baert J, et al.Ant colony optimization for the routing of jobs in optical grid networks[J].Joumal of Optical Networking,2008,7(2) : 160-172.
  • 3郑向瑜,彭勇.求解旅行Agent问题的自适应蚁群算法[J].计算机工程与应用,2010,46(16):52-54. 被引量:4
  • 4Dorigo M,Maniezzo V,Colorni A.Ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems, Man and Cybernetics, 1996,26 ( 1 ) : 29-41.
  • 5Dorigo M,Gambardella L M.Ant colony system:a cooperativelearning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation, 1997,1 ( 1 ) : 53-66.
  • 6Stzle T, Hoos H H.MAX-MIN ant system[J].Future Generation Computer Systems,2000,16(8) : 889-914.
  • 7李絮,李智勇,刘松兵,许波.多宇宙并行量子多目标进化算法[J].计算机工程与应用,2008,44(27):37-40. 被引量:6
  • 8王宇平,李英华.求解TSP的量子遗传算法[J].计算机学报,2007,30(5):748-755. 被引量:71
  • 9郭平,鄢文晋.基于TSP问题的蚁群算法综述[J].计算机科学,2007,34(10):181-184. 被引量:34

二级参考文献58

  • 1萧蕴诗,李炳宇,吴启迪.求解TSP问题的模式学习并行蚁群算法[J].控制与决策,2004,19(8):885-888. 被引量:20
  • 2王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 3Zitzler E,Thiele L.Muhiobjective evolutionary algorithms:a comparative ease study and the strength pareto approach[J].IEEE Transactions on Evolutionary Computation, 1999,3 (4) : 257-271.
  • 4Zitzler E,Laumanns M,Thiele L.SPEA2:improving the performance of the strength pareto evolutionary algorithm,Technical Report 103 [R].Computer Engineering and Communication Networks Lab,Swiss Federal Institute of Technology,Zurich,2001.
  • 5Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation, 2002,6 (2) : 182-197.
  • 6Han K H,Park K H, Lee C H,et al.Parallel quantum-inspired genetic algorithm for combinatorial optimization problem [C]//Proc Congress on Evolutionary Computation,Seoul,Korea,2001,20:1422- 1429.
  • 7Kim K H,Hwang J Y,Han K H,et al.A quantum-inspired evolutionary computing algorithm for disk allocation method[J].IEICE Trans Inform Syst, 2003 : 645-649.
  • 8Kim Y,Kim J H,Han K H.Quantum-inspired multiobjective evolutionary algorithm for multiobjective 0/1 knapsack problems[J].IEEE Congress on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, 2006.
  • 9Meshoul S,Mahdi K,Batouehe M.A quantum inspired evolutionary framework for muhi-objective optimization[J].Lecture Notes in Artificial Intelligence, 2005,3808:190-201.
  • 10Li Z,Rudolph G.Quantum-inspired multi-objective evolutionary algorithms with Hε-gate and Nε-gate[C]//Second International Conference on Bio-inspired Computing:Theories and Applications Pre- Proceeding, Zhengzhou, China, 2007.

共引文献110

同被引文献186

引证文献16

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部