期刊文献+

基于约束图谱旋量分析方法的调平机构约束设计 被引量:3

Constraint Design of a Leveling Mechanism via a Screw Theory Approach for Constraint Pattern Analysis
下载PDF
导出
摘要 约束图谱分析方法从自由度和约束的视角处理机械设计问题,由于自由度和约束概念的一般性,因而该方法对机械设计问题具有广泛的指导意义。从刚性机构及机械接口通用设计方法角度,将旋量理论应用于约束图谱分析方法研究,采用纯力旋量表示点接触约束,采用运动旋量表示自由度,给出约束图谱分析几何概念的旋量描述;基于互易旋量,提出自由度超平面的概念,用以描述点接触约束的单向性,给出并联机构自由度分析及串联机构约束分析方法;在此基础上,提出自由度线等价原则及自由度约束互补原则的代数基础,由此形成集成几何概念的约束图谱旋量分析方法。以光刻机调平机构为例开展应用研究,指出常用2-SPS&1-SP调平机构欠约束和欠确定运动问题,进而提出1-PSV&1-PSE&1-S调平机构,介绍约束图谱旋量分析方法在机构约束设计问题中的应用。 Constraint pattern analysis handles the mechanical design problem from a viewpoint of freedom and constraint,because of the generality for the concept of freedom and constraint,the method is a wide guide for machine design.From a viewpoint of a general design method for rigid mechanisms and mechanical interfaces,screw theory is applied in constraint pattern analysis.Point contact constraint and degree of freedom are denoted as a pure wrench and a twist,respectively.The geometrical concept for constraint pattern analysis is provided.The freedom hyper-plane is presented via reciprocal screw,and the analytical approach for freedom of parallel connections and constraint of serial connections are provided.The screw algebra basis for the equivalence rule for a freedom line and the rule of complementary pattern are proposed,a screw theory approach for constraint pattern analysis is formed.The application for the approach is carried out by a leveling mechanism for an optical projection exposure machine.The under-constraint and uncertain motion in the common 2-SPS1-SP leveling mechanism is pointed out,and a 1-PSV1-PSE1-S leveling mechanism is proposed in order to introduce the application of the approach in the constraint design of mechanisms.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2011年第19期49-58,共10页 Journal of Mechanical Engineering
基金 深圳市精密工程重点实验室资助项目(CXB201005250018A)
关键词 旋量理论 约束图谱分析 点接触约束 调平机构 约束设计 Screw theory Constraint pattern analysis Point contact constraint Leveling mechanism Constraint design
  • 相关文献

参考文献14

  • 1MAXWELL J C. The scientific papers of James Clerk Maxwell[M]. New York: Dover Press, 1890.
  • 2BLANDING D L. Exact constraint: Machine design using kinematic principles[M]. New York: ASME Press, 1999.
  • 3HALE L C. Principles and techniques for designing precision machines [D]. Cambridge MA: Massachusetts Institute of Technology, 1999.
  • 4SLOCUM A H. Kinematic couplings: A review of design principles and applications[J]. International Journal of Machine Tools and Manufacture, 2010, 50(4): 310-327.
  • 5HOPKINS J B. Design of parallel flexure systems via freedom and constraint topologies (FACT) [D]. Cambridge MA: Massachusetts Institute of Technology, 2007.
  • 6HOPKINS J B, CULPEPPER M L. Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT)-part I:Principles[J]. Precision Engineering, 2010, 34(2) : 259-270.
  • 7HOPKINS J B, CULPEPPER M L. Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT)-part II: Practice[J]. Precision Engineering, 2010, 34(2): 271-278.
  • 8SU Haijun, DOROZHKIN D V, VANCE J M. A screw theory approach for the conceptual design of flexible joints for compliant mechanisms [J]. Journal of Mechanisms and Robotics, 2009, 1(4): 041009.
  • 9于靖军,裴旭,毕树生,宗光华,张宪民.柔性铰链机构设计方法的研究进展[J].机械工程学报,2010,46(13):2-13. 被引量:118
  • 10YU Jingjun, LI Shouzhong, PEI Xu, et al. Type synthesisprinciple and practice of flexure systems in the framework of screw theory part I : General methodology[C]// 2010 ASME International Design Engineering Conference, Aug. 15-18, 2010, Montreal, Canada. NewYork: ASME, 2010.- DETC2010-28783.

二级参考文献102

  • 1HOWELL L L.Compliant mechanisms[M].New York:Wiley Interscience,2001.
  • 2PAROS J M,WEISBORD L.How to design flexure hinges[J].Machine Design,1965,37(27):151-156.
  • 3HOWELL L L,MIDHA A.Parametric deflection approximations for end-loaded,large-deflection beams in compliant mechanisms[J].Journal of Mechanical Design,1995,117(1):156-165.
  • 4HETRICK J A,KOTA S.An energy formulation for parametric size and shape optimization of compliant mechanisms[J].Journal of Mechanical Design,1999,121(2):229-234.
  • 5FRECKER M I,ANANTHASURESH GK,NISHIWAKI S,et al.Topological synthesis of compliant mechanisms using multi-criteria optimization[J].Journal of Mechanical Design,1997,119(2):238-245.
  • 6WANG M Y,CHEN S,WANG X,et al.Design of multimaterial compliant mechanisms using level-set methods[J].Journal of Mechanical Design,2005,127(5):941-956.
  • 7ZHOU Hong,TING Kunlun.Topological synthesis of compliant mechanisms using spanning tree theory[J].Journal of Mechanical Design,2005,127(4):753-759.
  • 8HULL P V,CANFIELD S.Optimal synthesis of compliant mechanisms using subdivision and commercial fea[J].Journal of Mechanical Design,2006,128(2):337-348.
  • 9SLOCUM A H.Precision machine design[M].New York:Prentice-Hall Inc.,1992.
  • 10BLANDING D L.Exact constraint:Machine design using kinematic principle[M].New York:ASME Press,1999.

共引文献155

同被引文献24

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部