期刊文献+

基于分层MRF模型的POLSAR图像分类算法 被引量:2

Classification of polarimetric SAR images based on multi-scale Markov random field
下载PDF
导出
摘要 针对多极化合成孔径雷达(polarimetric synthetic aperture radar,POLSAR)影像由于受到相干斑噪声影响导致分类精度较低,提出了一种基于均值漂移和多尺度马尔科夫随机场的非监督分类算法。该算法首先由Mean-Shift算法得到最粗尺度的初始分类结果,然后由马尔科夫随机场对结果进行优化得到最粗尺度最终分类结果。将上一尺度的分类结果映射到下一尺度作为初始分类结果,然后由Wishart分布对极化协方差矩阵进行建模并采用迭代条件模式(iterative conditional modes,ICM)算法求取基于最大后验下分类结果。逐层映射,最细尺度的结果作为最终分类结果。详细给出了算法的基本原理和实施步骤,并采用E-SAR和AirSAR数据对算法进行了验证。实验表明,与同类算法相比较,算法具有更高的分类精度。 For reducing the impact caused by speckle noise on classification results,a new classification algorithm is proposed for polarimetric synthetic aperture radar (POLSAR) images based on mean-shift and multiscale Wishart Markov random field. The mean-shift algorithm is used to get the initial classification for the coarsest scale, and then a Markov random field is introduced to achieve the classification result. The classification result on a coarser scale is employed as the initial classification of the nearest finer scale. Meanwhile, the Wishart distribution is employed to model the observed field, and then the iterative conditional modes (ICM) algorithm is adopted to implement the maximum a posteriori estimation of pixel labels for each scale. The classification result of the finest scale is the final classification result for POLSAR images. The algorithm is described in detail and the eontrastive experiment is done using AirSAR L band and E-SAR polarimetric images. The experiment result indicates that the proposed method could get higher accuracy of classification than the classical algorithms.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第11期2413-2417,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(61001187 41001256 40971219 60602013) 国家高技术研究发展计划(863计划)(2007AA120204)资助课题
关键词 多极化合成孔径雷达 分类 均值漂移 马尔科夫随机场 WISHART分布 polarimetric synthetic aperture radar (POLSAR) classification mean shift Markov random field (MRF) Wishart distribution
  • 相关文献

参考文献17

  • 1Lee J S, Grunes M R, Kwok R. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution [J]. International Journal of Remote Sensing, 1994,15 (11) : 2299 - 2311.
  • 2Wu Y H, Ji K F, Yu W X, et al. Region-based classification ofpolarimetric SAR images using Wishart MRF[J]. IEEE Trans. on Geoscience and Remote Sensing Letters, 2008,5(4): 668 - 672.
  • 3Cloude S R, Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Trans. on Geoscience and Remote Sensing, 1996,34(2) :498 - 518.
  • 4Freeman A, Durden S. A three-component scattering model for polarimetric SAR data [J]. IEEE Trans. on Geoscience and Remote Sensing ,1998,36(3) :963 - 973.
  • 5Lee J S, Grunes M R, Ainsworth T L, et al. Unsupervised clas sification using polarimetrie decomposition and the complex Wishart classifier[J]. IEEE Trans. on Geoscience and Remote Sensing,1999,37(5) :2249 - 2257.
  • 6Pottier E, Lee J S. Application of the H/A/alpha polarimetric decom- position theorem for unsupervised classification of fully polarimetric SAR data based on the wishart distribution[C]//Proc, of the Committee on Earth Observing Satellites SAR Workshop, 2000 : 335 - 340.
  • 7Lee J S, Grunes M R, Pottier E. Unsupervised terrain classification preserving polarimetric scattering characteristics [J]. IEEE Trans. on Geoscience and Remote Sensing, 2004,42 (4) :722 - 731.
  • 8Cao F, Hong W, Wu Y R, et al. An unsupervised segmentation with an adaptive number of clusters using the SPAN/H/a/A space and the complex Wishart clustering for fully polarimetric SAR data analysis[J]. IEEE Trans. on Geoscience and Remote Sensing ,2007,45(11) :3454 - 3467.
  • 9杨杰,郎丰铠,李德仁.一种利用Cloude-Pottier分解和极化白化滤波的全极化SAR图像分类算法[J].武汉大学学报(信息科学版),2011,36(1):104-107. 被引量:16
  • 10Kaan E, Ian G C, Rabab K W. Segmentation and classification of polarimetric SAR data using spectral graph partitioning[J]. IEEE Trans. on Geoscience and Remote Sensing ,2010,48(1) :164 - 174.

二级参考文献43

  • 1汪西莉,刘芳,焦李成.基于不完全分层MRF的非监督图象分割[J].电子学报,2004,32(7):1086-1089. 被引量:3
  • 2焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 3Smits P C, Dellepiane S G. Synthetic aperture radar image segmentation by a detail preserving Markov random field approach [J]. IEEE Trans. on Geoscience and Remote Sensing, 1997, 35(4): 844-857.
  • 4Geman S, Geman D. Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1984, 6 : 721 - 741.
  • 5Besag J E. On the statistical analysis of dirty picture[J]. J. Royal Stat. Soc. Ser. B, 1986, B-48; 259-302.
  • 6Lee J S, Grunes M R, Grandi G De. Polarimetric SAR speckle filtering and its impact on terrain classification. IEEE Trans. on Geoscience and Remote Sensing ,1999, 37(5) :2363 - 2373.
  • 7Beaulieu J M, Touzi R. Segmentation of textured polarimetric SAR scenes by likelihood approximation[J]. IEEE Trans. on Geoscience Remote Sensing, 2004, 42 (10) : 2063 - 2072.
  • 8Xu Feng, Jin Yaqiu. Deorientation theory of polarimetric scat tering targets and application to terrain surface classification[J] IEEE Trans. on Geoscience Remote Sensing, 2005, 43 (10): 2351 - 2364.
  • 9Park S E, Moon W M. Unsupervised classification of scattering mechanisms in polarimetric SAR data using fuzzy logic in entropy and alpha plane[J]. IEEE Trans. on Geoscience Remote Sensing,2007, 45 (8) : 2652 - 2664.
  • 10Lee J S, Grunes M R, Pottier E, et al. Unsupervised terrain classifcation preserving polarimetric scattering characteristics [J]. IEEE Trans. on Geoscience Remote Sensing ,2004, 42(4) : 722 - 731.

共引文献30

同被引文献4

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部