期刊文献+

基于决策树的快速SVM分类方法 被引量:11

Fast SVM classification method based on the decision tree
下载PDF
导出
摘要 为提高支持向量机(support vector machine,SVM)算法对大规模数据的适应能力,加快SVM算法的分类速度,提出一种基于决策树的快速SVM分类方法。该方法的重点在于构建一棵决策树,将大规模问题分解为相对简单的子问题,树中节点由线性支持向量机组成,每个节点包含一个决策超平面,分类过程取决于节点的数量。此方法在分类复杂样本时避免了使用非线性核函数。并且由于使用线性核函数,则不用进行模型选择,进一步加快了样本的分类速度。实验表明,针对大规模多特征数据的非线性分类问题,该方法比传统方法具有更高的速度。 In order to improve the large-scale data adaptability of the support vector machine (SVM) algorithm, accelerate the classification speed of the SVM algorithm, one fast SVM classification method is proposed based on the decision tree. The focus of this method is to construct a decision tree and decompose the large-scale problem into relatively simple sub-problems, the tree nodes are composed by the linear SVMs, then each node contains a decision hyperplane, the classification process depends on the number of nodes. This meth- od avoids using the nonlinear kernel function in classification of complex samples, and by using a linear kernel function, it needs not to undertake the model selection, thus accelerating the samples classification rate. Experiments show that for the nonlinear classification problem of large-scale data with multiple features, the method has higher speed than the traditional methods.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第11期2558-2563,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60736009)资助课题
关键词 支持向量机 快速分类 决策树 大规模数据 support vector machine (SVM) fast classificatiom decision tree large-scale data
  • 相关文献

参考文献16

  • 1Vapnik V N. Statistical learning theory [M]. New York: Wiley, 1998.
  • 2Zheng L G, Zhou H, Wang C L, et al. Combing support vector regression and ant colony optimization to reduce NOx emissions in coal-fired utility[J]. Energy and Fuels, 2008,22(2) : 1034 - 1040.
  • 3文益民,王耀南,吕宝粮,陈义明.支持向量机处理大规模问题算法综述[J].计算机科学,2009,36(7):20-25. 被引量:12
  • 4Burges C J C, SchOlkopfand B. Improving speed and accuracy of support vector learning machines[C]// Proc. of the Advances in Neural Information Processing Systems, 1997 : 375 - 381.
  • 5Downs T, Gates K E, Masters A. Exact simplification of support vector solution[J]. Machine Learning ,2001,42(2) :293 - 297.
  • 6Stine R, Lin H, Auslender L. Speeding up multi-class SVM evaluation by pca and feature selection[C]// Proc. of the Society for Industry and Applied Mathematics Workshop,2005 :72 -79.
  • 7Kristin P, Bennett K P, Cristianini N, et al. Enlarging the margins in perceptron decision trees[J]. Machine Learning, 2000, 41(3) :295 - 313.
  • 8Segata N, Blanzieri E. Fast and scalable local kernel machines[J]. Machine Learning Research, 2010,11 (6) : 1883 - 1926.
  • 9Dorff K C, Chambwe N, Srdanovic M, et al. BDVaG reproducible large-scale predictive model development and validation in high-throughput datasets [ J ]. Bioinformatics, 2010, 26 ( 19 ) : 2472 -2473.
  • 10Shalev S S, Srebro N. SVM optimization: inverse dependence on training set size[C] // Proc. of the 25th Conference on Machine Learning, 2008 : 928 - 935.

二级参考文献30

共引文献51

同被引文献81

  • 1李金屏,何苗,杨波.遗传算法平均截止代数和成功率与种群规模之间的关系[J].系统仿真学报,2001,13(z1):206-210. 被引量:10
  • 2张霞,艾伦,胡又农.教育装备研究过程的决策树分析法[J].中国教育技术装备,2007(2):4-6. 被引量:5
  • 3王燕爽.分类能力与学习成绩[D].吉林:东北师范大学外国语学院,2006.
  • 4Teng S H,Du H L,Wu N Q.A cooperati-ve network intrusion detection based on fuzzy SVMs[J].Journal of Networks,2012,5 (4):475-483.
  • 5Zhang W,Teng S H,Zhu H B.Fuzzy multi-class support vector machines for cooperative network intrusion detection[C].Proceedings of the 9th IEEE International Conference on Cognitive Informatics(ICCI),Beijing,2010:811-818.
  • 6勒卡斯集团.第一届勒卡斯杯数据挖掘竞赛(上海站)[DB/OL].[2014-03-20].http:∥ledmclub.engagecloud.net/.
  • 7Teng Shaohua, Du Hongle, Wu Naiqi. A cooperative net- work intrusion detection based on fuzzy SVMs [ J]. Journal of Networks ,2010,5 (4) :475-483.
  • 8Zhang Wei, Teng Shaohua, Zhu Haibin. Fuzzy multi-class support vector machines for cooperative network intrusion detection [ C ]//Proceedings of the 9t IEEE International Conferenceon Cognitive Informatics ( ICCI), Beijing, 2010 : 811-818.
  • 9Lin Fuming, Guo Jun. Improving support vector machine by preprocessing data with decision tree [ C ]//ComputerScience and Service System ( CSSS), Nanjin, 2011 : 467- 469.
  • 10第一届勒卡斯杯数据挖掘竞赛(上海站)[EB/OL].[2012-05-12].http://ledmclub.engagecloud.net/.

引证文献11

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部