期刊文献+

基于小波尺度函数的WSK-SV算法及其气动性能预测 被引量:1

WSK-SV algorithm based on scaling function of wavelet and its prediction for aerodynamic performance
原文传递
导出
摘要 提出了一种将小波的尺度函数与SV(support vector)算法相结合的WSK-SV(wavelet scalingkernel-support vector)新算法,并将Daubechies小波以及Shannon小波的尺度函数分别构成尺度核函数,而且分别作为SV算法中一个可容许的支持向量核函数使用.该算法充分利用了Daubechies小波函数的紧支集与正交等特点以及小波的MRA(multi-resolution analysis,多分辨分析),并注意了尺度核函数能够满足Mercer条件.该算法除了具有通常SVM(support vector machine)所具有的优点外,还具有很好的收敛性以及泛化能力,能够有效地提高学习与预测效率.典型算例选取了不同的小波尺度函数,数值计算表明:在一维、二维和三维问题中,这些小波的尺度函数均可以用于WSK-SV算法,进而显示了这个新算法的可行性与通用性. A new wavelet scaling kernel-support vector(WSK-SV) algorithm based on scaling function of wavelet and support vector(SV) algorithm was presented in this paper,which firstly took Daubechies and Shannon wavelet-scaling kernel function for a kind of admissible support vector kernel,respectively.WSK-SV algorithm possesses such properties as compactly supported wavelet bases,orthogonal bases,multiresolution analysis(MRA),and satisfies Mercer condition for scaling kernel function.This algorithm not only has the advantages of general support vector machine(SVM),but also has a good convergence and excellent capacity of generalization,which can improve the learning efficiency and predicting ability.Numerical experiments demonstrate that this proposed WSK-SV algorithm is feasible and effective.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2011年第10期2161-2166,共6页 Journal of Aerospace Power
基金 国家自然科学基金(50376004) 高等学校博士学科点专项基金(20030007028)
关键词 WSK-SV(wavelet scaling kernel-supportvector)算法 DAUBECHIES小波 SHANNON小波 小波尺度核函数 凸二次规划 气动性能预测 WSK-SV(wavelet scaling kernel-support vector) algorithm Daubechies wavelet Shannon wavelet wavelet scaling kernel function convex quadratic programming prediction for aerodynamic performance
  • 相关文献

参考文献13

  • 1CHEN Naixing. Aerothermodynamics of turbomachinery: analysis and design[M]. Singapore: John Wiley &Sons, 2010.
  • 2王保国,刘淑艳,李翔,林欢,李学东.基于Nash-Pareto策略的两种改进算法及其应用[J].航空动力学报,2008,23(2):374-382. 被引量:7
  • 3Deb K,Pratap A,Agarwal S,et al. A fast and elitist multiobjective genetic alogorithm= NSGA lI [J]. IEEE Transactions on Evolutionary Computation, 2002,6 (2) : 182-197.
  • 4Kim J H,Choi J H,Husain A,et al. Multi-objective opti mization of a centrifugal compressor impeller through evo lutionary algorithms [J]. Journal of Power and Energy 2010,224(5) :711-721.
  • 5王保国,吴俊宏,刘淑艳,钱耕,刘艳明.流场特性预测的两类高效方法[J].航空动力学报,2010,25(8):1763-1767. 被引量:3
  • 6Vapnik V N. The nature of statistical learning theory[M]. New York: Springer, 1996.
  • 7Suypens J A K, Gestel T V, Brobanter J D, et al. Least squares support vector machines [M]. Singapore: World Scientific, 2002.
  • 8Sch61kopf B, Burges C J, Smola A J. Advances in kernel methods : support vector learning[ M]. Boston : MIT Press, 1999.
  • 9Mallat S. A wavelet tour of singal processing[M]. 2nd ed. San Diego : Academic Press, 1999.
  • 10WANG Baoguo,WU Junhong. Construction of Daubechies wavelet and its application in shock capturing[R]. Gyeo ngJu:9th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows (ISAIF) , 2009-3D-1,2009.

二级参考文献73

  • 1王保国,刘淑艳,张雅,纪秀玲,靳艳梅.双时间步长加权ENO-强紧致高分辨率格式及在叶轮机械非定常流动中的应用[J].航空动力学报,2005,20(4):534-539. 被引量:9
  • 2王保国,沈孟育.高速粘性内流的高分辨率高精度迎风型杂交格式[J].空气动力学学报,1995,13(4):365-373. 被引量:8
  • 3王治华,傅惠民.广义时变ARMA序列预测方法[J].航空动力学报,2005,20(5):713-717. 被引量:10
  • 4McCulloch W, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics, 1943, 5:115- 133.
  • 5Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences, 1982, 79: 2554- 2558.
  • 6Rumelhart D E, Hinton G E, Williams R J. Learning representations by back propagation errors[J]. Nature, 1986, 323:533-536.
  • 7Haykin S. Neural networks: A comprehensive foundation[M]. 2nd. Trenton: Prentice Hall, 1998.
  • 8Meyer Y. Wavelets and operators[M]. Cambridge Studies in Advanced Mathematics 37, New York: Cambridge University Press, 1992.
  • 9Mallat S G. Multiresolution approximations and wavelet orthonormai bases of L^2(R)[J].Trans. Amer. Math. Soc. ,1989,315:69 -87.
  • 10Grossmann A, Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape[J]. SIAM J. Math. Anal. ,1984, 15:723-736.

共引文献14

同被引文献8

  • 1Groth R. Data mining: Building competitive advances[M]. New Jersey: Prentice Hall, 2000.
  • 2Haykin S. Neural networks: A comprehensive foundation[M]. 2nd ed. Trenton: Prentice Hall, 1998.
  • 3Vapnik V N. Statistical learning theory[M]. New York; John Wiley Sons,1998.
  • 4WANG Bao-guo. Research and progress of AMME lab on man-machine-environment system engineering in the past 20 years [C] //LONG Sheng-zhao, Dhillon B S. Proceedings of the 11th conference on man-machine-environment system engineering. Irvine:Scientific Research Publishing,USA,2011 : 393-401.
  • 5GU Cui, WANG Bao-guo. Application of wavelet neural networks in pilot/astronaut mathematical control model[C] // LONG Shengzhao, Dhillon B S. Proceedings of the 9th conference on man-machine-environment system engineering. Irvine : Scientific ResearchPublishing,USA,2009 : 7 6-80.
  • 6AN Er, WANG Bao-guo. Mathematical model of pilot-aircraft system and prediction of flying qualities based on wavelet neural[C] //LONG Sheng-zhao, Dhillon B S. Proceedings of the 11th conference on man-machine-environment system engineering. Irvine : ScientificResearch Publishing,USA,2011 : 345-348.
  • 7郭宇航,王保国.两类新型神经网络及其在安全评价中的应用[J].中国安全科学学报,2008,18(7):29-33. 被引量:5
  • 8王保国,刘淑艳,钱耕,南希,郭宇航.一种小波神经网络与遗传算法结合的优化方法[J].航空动力学报,2008,23(11):1953-1960. 被引量:7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部