期刊文献+

基于贪心EM算法的HMRF遥感影像变化检测 被引量:4

Remote Sensing Image Change Detection Based on Greedy EM Algorithm for HMRF
下载PDF
导出
摘要 提出一种基于贪心EM算法的HMRF遥感影像变化检测算法。该算法采取PCA与差值法相结合的方式来构造差分影像。首先,采用隐马尔可夫随机场(Hidden Markov Random Field,HMRF)模型描述空间上下文信息,并构造系统能量函数;然后,利用贪心EM算法克服EM算法假定混合成分数为已知、迭代结果过分依赖初始值、可能收敛到局部最大点或收敛到参数空间边界的缺点,能够准确学习分布模型结构和参数,发现数据对模型的最佳匹配;最后,通过条件迭代模型(Iterated Conditional Modes,ICM)优化算法求解能量函数最优解,获取变化区域。实验结果表明,该算法能够更好地保持影像的结构性,有效去除孤立噪声。 A remote sensing image change detection approach based on greedy Expectation Maximization (EM) algorithm for Hidden Markov Random Field (HMRF) is proposed. The difference image is constructed by Principal Component Analysis (PCA) and subtraction operation. Firstly, the HMRF model is applied to characterize the contexture-dependent information, and the energy function of system is defined. Secondly, the greedy EM algorithm is used to overcome the disadvantage of the standard EM algorithm that assumed the number of the mixture components is a known priori, the performance of the overall parameter estimation process depends on the given good initial settings excessively, and the estimated parameter can be resulted from some local optimum points. The distribution model structure and parameters are learned accurately to find the best fit of the given data. Finally, the changed area is obtained by using Iterated Conditional Modes (ICM) to optimize the energy function. Experiments show that the proposed method has virtues of preserving structural change and filtering noises.
出处 《光电工程》 CAS CSCD 北大核心 2011年第11期50-56,共7页 Opto-Electronic Engineering
基金 自动化部队科学研究项目(2S100402) 陕西省自然科学基金资助项目(2010HM8038)
关键词 变化检测 隐马尔可夫随机场模型 贪心EM算法 change detection hidden Markov random field greedy EM algorithm
  • 相关文献

参考文献12

二级参考文献48

共引文献79

同被引文献40

  • 1李小春,陈鲸.一种变化检测的新算法[J].宇航学报,2005,26(3):334-338. 被引量:7
  • 2陈述彭 童庆禧 郭华东.遥感信息机理研究[M].北京:科学出版社,1999.338-352.
  • 3Celik T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering [J]. IEEE Geoseience and Remote Sensing Letters(S1545-598X), 2009, 6(4): 772-776.
  • 4Baatz M, Schfipe A. Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation [J] Angewandte Geographische lnformationsverarbeitung XII, 2000, 12(12): 12-23.
  • 5Turgay Celik, Kai-Kuang Ma. Multitemporal linage Change Detection Using Undecimated Discrete Wavelet Transtbrm and Active Contours [J]. I EEE Transactions on Geoscience and Remote Sensing(S0196-2892), 2011, 49(2): 706-716.
  • 6WANG Wenjie, ZHAO Zhongming, ZHU Haiqing. Object-oriented Multifeature Fusion Change Detection Method for High Resolution Remote Sensing hnage [C]//17th international conference on geo informatics, Fairfax, Aug 12-14, 2009.
  • 7Jean-Luc Starck, Jalal Fadili, Fionn Murtagh. The Undecimated Wavelet Decomposition and its Reconstruction [J]. IEEE Transactions on Image Processing(S1057-7149), 2007, 16(2): 297-308.
  • 8Mourad Bouziani, Kalifa Goita, Dnng Chen He. Automatic change detection of buildings in urban envirtmment from w, ry high spatial resolution images using existing geodatabase and prior knowledge Original Research Article [ J]. ISPRS Journal of Phntogrammetry and Remote Sensing, 2010, 65( 1 ) : 143 - 153.
  • 9Xu Min, Cao Chunxiang, Zhang Hao, et al. Change detection of an earthquake-induced ban'ier lake based on remote sensing image classification [ J]. International Journal of Remote Sensing, 2010, 31(13) : 3521 -3534.
  • 10Byme G F , Crapper P F. Monitoring land-cover change by p rincipalcom ponentanaiysis of muhi-temporalLan dsatdata [ J ]. Remote Sensing of Environment, 1980, 10:175 -184.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部