期刊文献+

论经济孤立子的界定、特点及发展对策

下载PDF
导出
摘要 对经济主体进行研究不仅有利于认知经济发展规律,而且可以为相关经济政策的制定提供有益的参考。经济孤立子是从新角度对已有经济主体进行再认识的结果。经济孤立子是指组织关系独立、经济职能单一、与其他经济主体很少或不存在隶属关系的服务性经济主体,具有组织形式独立、经济功能单一、自组织、自优化等特点。经济孤立子是劳动分工不断细化和交易费用最小化诉求的产物,是色散效应与非线性效应矛盾统一的结果,还是"阴"与"阳"的和谐统一。研究经济孤立子不仅有利于现代科学理论在经济领域应用的完整性,而且有助于从全新角度对经济主体进行认知和理解,并且可以为采取适当措施促进经济孤立子的发展提供有益参考。促进经济孤立子及国民经济的发展可以通过促进社会分工的进一步细化、降低社会交易费用和完善市场机制等措施来实现。
出处 《学术交流》 CSSCI 北大核心 2011年第10期93-96,共4页 Academic Exchange
基金 国家自然科学基金项目(70773032) 黑龙江省自然科学基金项目(G2007-07)
  • 相关文献

参考文献10

  • 1周守仁.孤立子理论的哲学和方法论问题[J].自然辩证法研究,1993,9(7):11-21. 被引量:4
  • 2李京文,罗春龙,张昕竹,张近.混沌理论与经济学[J].数量经济技术经济研究,1991,8(2):19-26. 被引量:14
  • 3Hartmann M,,Borgmann C.Strengthening the Linkage of Strategy with Operations in Decentralized Units-Dynamic Pro-duction and Organization Structures沈阳先进制造研讨会,1997.
  • 4Peter LChristiansen,Robert D.Parmentier.Structure,coherence and chaos in dynamical systems. . 1989
  • 5Bhagwati.Splinterinan disembodiment of services and de-veloping countries. The World Economy . 1984
  • 6M. K. Sayadi and J. Pouget.Chaos transition of soliton motion on a microstructured lattice. Physica D Nonlinear Phenomena . 1992
  • 7李瑞杰,李东永.Nonlinear Dispersion Effect on Wave Transformation[J].China Ocean Engineering,2000,15(3):375-384. 被引量:5
  • 8Scott Russell,J.Report on waves. Report of the 14th Meeting of the British Association for the Advancement of Science . 1844
  • 9Zabusky NJ,Kruskal MD.Interaction of solitons in a collisionless plasma and the recurrence of initial states. Physical Review . 1965
  • 10Coase RH.The Nature of the Firm. Economics, New series . 1937

二级参考文献15

  • 1[1]Berkhoff, J. C. W., 1972. Computation of combined refraction-diffraction, Proc. 13th Coat. Engrs. Conf. ASCE, NewYork, N. Y., 471~490.
  • 2[2]Berkhoff. J. C. W., Booij, N. and Radder, A. C., 1982. Verification of numerical wave propagation models for simple harmonic linear water waves, Coastal Eng., (6), 255~279.
  • 3[3]Booij, N., 198 1. Gravity wares on water with non-uniform depth and current, Rep. No. 81-1, Dept. Civ. Eng., Delft University of Technology.
  • 4[4]Dingemans, M. W., 1997. Water. ware propagation over uneven bottonts, Part l—Linear Wave Propagation, World Scientific Press, Singapore, 338~348.
  • 5[5]Hedges, T. S., 1976. An empirical modification to linear wave theory, Proc. In st. Cir. Eng.. 61,575~579.
  • 6[6]Hedges, T. S., 1987. An approximate model for nonlinear dispersion in monochromatic wave propagalion models, by Kirby J. T. and Dalrymple R. A. Discussion, Coastal Eng., (13), 87~88.
  • 7[7]HONG Guangwen et al., 1999. Numerical modelling of wave propagation in water of varying topography and current,Journal ofHohai Universitv, (2), 1~9. (in Chinese)
  • 8[8]Kirby, J. T. and Dalrymple, R. A., 1986. An approximate model for nonlinear dispersion in monochromatic wave propa gation models, coastal Eng., (9), 545~561.
  • 9[9]Kirby, J. T. and Dalrymple, R. A., 1987. An approximate model for nonlinear dispersion in monochromatic wave propa gation models, by Kirby J. T. and Dalrymple R. A. Replay. Coastal Eng, (ll ), 89~92.
  • 10[10]LI Ruijie and WANG Honjie, 1999. A modified form of mild slope equation with weakly nonlinear effect, China Occan En gineering, 13 (3), 328~333.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部