期刊文献+

基于t分布GARCH模型的电价波动时变性研究 被引量:6

Investigation on time-varying volatility of electricity price based on GARCH model with student-t distribution
下载PDF
导出
摘要 电价的分布特性是电力市场风险管理和电力金融产品定价的重要依据。在对电力市场现货电价的变动规律综合分析的基础上,使用时变方差、时变自由度和正弦函数来刻画电价序列的异方差、尖峰厚尾和多重周期,建立了一个基于t分布的多周期GARCH模型。对PJM电力市场历史数据的分析表明:系统负荷平方对电价均值具有显著的影响,电价序列具有周、半月、月、双月、季、半年等多重周期和波动集聚性,其方差和尖峰厚尾呈现出明显的时变特征。该模型待估参数少,计算速度快,定阶容易,具有一定的实用价值。 The distribution properties of electricity prices are the important information for the risk management of electricity markets and the pricing of electricity financial derivatives. With comprehensive consideration of the changing rules of the electricity spot price, a multicycle GARCH model with student-t distribution is proposed, in which the heteroscedasticity, kurtosis and multicycle of electricity price series are described by time-varying variance, time-varying degree of freedom and sine function. The numerical example based on the historical data of the PJM market shows that the system load squares have a significant effect on the mean electricity price, the electricity price series have volatility clustering and weekly, semi-monthly, monthly, bimonthly, quarterly and semi-annual periods, and the variance and the degree of freedom of student-t distribution manifest the clear time-varying characteristics. The model holds parsimonious scale of estimated parameters, less computational cost, easy selection of the order and high practical application value.
出处 《电力系统保护与控制》 EI CSCD 北大核心 2011年第23期49-53,59,共6页 Power System Protection and Control
基金 河南省教育厅自然科学研究计划项目(2010B120002)
关键词 学生t分布 时变方差 时变自由度 波动集聚 GARCH模型 student-t distribution time-varying variance time-varying degree of freedom volatility clustering GARCH model
  • 相关文献

参考文献19

  • 1陈思杰,周浩.电力市场电价预测方法综述[J].继电器,2006,34(11):54-60. 被引量:30
  • 2Szkuta B R, Sanabra L A, Dillon T S. Electricity price short-term forecasting using artificial neural networks[J]. IEEE Transactions onPower Systems, 1999, 14 (3):851-857.
  • 3敖磊,刘旭东,吴耀武,熊信银.基于改进DFNN的短期电价预测新方法[J].继电器,2006,34(6):34-38. 被引量:5
  • 4Catalao J P S, Mariano S J P S, Mendes V M F, et al. Short-term electricity prices forecasting in a competitive market: a neural network approach[J]. Electric Power System Research, 2007, 77 (10). 1297-1304.
  • 5Guo J J, Peter B L. Selecting input factors for clusters of Gaussian radial basis function networks to improve market clearing price prediction[J]. IEEE Trans on Power Systems, 2003, 18 (2): 665-672.
  • 6张显,王锡凡,陈芳华,叶斌,陈皓勇.分时段短期电价预测[J].中国电机工程学报,2005,25(15):1-6. 被引量:60
  • 7Hong Y Y, Hsiao C Y. Locational marginal price forecasting in deregulated electricity markets using artificial intelligence[J], lEE Proc on Gener, Transm, and Distrib, 2002, 149 (5): 621-626.
  • 8Claudia P R, George J A. Energy price forecasting in the Ontario competitive power system market[J]. IEEE Trans on Power Systems, 2004, 19 ( 1 ) : 366-374.
  • 9Zhang Li, Peter B L. Neural network-based market clearing price prediction and confidence interval estimation with an improved extended Kalman filter method[J]. IEEE Trans on Power Systems, 2005, 20 ( 1 ) .. 59-66.
  • 10Amjady N. Day-ahead price forecasting of electricity markets by a new fuzzy neural network[J]. IEEE Trans on PowerSystems, 2006, 21 (2): 887-986.

二级参考文献73

共引文献150

同被引文献101

引证文献6

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部