期刊文献+

CDKF在车载捷联惯导自对准中的应用

CDKF in Initial Alignment of SINS for Land Vehicle
下载PDF
导出
摘要 研究了车载捷联惯导在大方位失准角下的静基座自对准。采用Sigma点卡尔曼滤波,根据均值与协方差信息按非线性映射传播的特点,直接利用非线性模型,可以消除EKF存在的需要解析Jacobi矩阵以及将非线性系统线性化后的系统模型误差问题不易调整的弊端,其中的中心差分卡尔曼滤波(CDKF)精度高,且对状态协方差阵不敏感。仿真结果表明,在大方位失准角下采用CDKF进行初始对准,比用传统的EKF更精确且收敛速度更快。 A method for the initial alignment of the strap-down inertial navigation system of land vehicle on stationary base is presented.The extended Kalman filter (EKF) is used as the standard technique for the initial alignment of SINS.However,it is based on a sub-optimal im- plementation of the recursive Bayesian estimation framework applying Gaussian random variables.It requires analytic Jacobians.To overcome these shortages,a new extension method of Kalman filters-Sigma point Kalman filters (SPKF) is proposed.Central-difference Kalman filter (CDKF),a precise and robust method belonged to SPKF,is used to the self initial alignment of SINS.Simulation results show that CDKF is superior to the EKF and it is an efficient method in the initial alignment of SINS for land vehicle on stationary base.
出处 《控制工程》 CSCD 2006年第S2期14-16,20,共4页 Control Engineering of China
基金 国家自然科学基金(60374067)
关键词 车载导航 捷联惯导 自对准 扩展卡尔曼滤波 CDKF land vehicle navigation SINS self initial alignment EKF CDKF
  • 相关文献

参考文献8

  • 1宋崎,韩建达.基于UKF的移动机器人主动建模及模型自适应控制方法[J].机器人,2005,27(3):226-230. 被引量:7
  • 2王丹力,张洪钺.惯导系统初始对准的非线性滤波算法[J].中国惯性技术学报,1999,7(3):18-22. 被引量:30
  • 3Saulson B,,Chang K C.Comparison of nonlinear estimation for ballistic missile tracking. Proc of SPIE-The int Society for Optical Engineering . 2003
  • 4EI-Sheimy N.An unscented Kalman filter for in-motion align- ment of low-cost IMUs. Position Location and Navigation Symposium,Monterey,CA . 2004
  • 5Norgaard M,Poulsen N,Ravn O,et al.New developments in state estimation for nonlinear systems. Automatica . 2000
  • 6Fang J C,Wan D J.A fast initial alignment method for strap- down inertial navigation system on stationary base aerospace and electronic systems. IEEE Transactions on Aerospace and Electronic Systems . 1996
  • 7S.J.Julier,J.K.Uhlmann.A New Approach for Filtering Nonlinear Systems. . 1995
  • 8Tom V,Wang Xiaodong.Decentralized Sigma-Point Information Filters for Target Tracking in Collaborative Sensor Networks. IEEE Transactions on Signal Processing . 2005

二级参考文献6

  • 1Brunke S, Campbell M. Estimation architecture for future autonomous vehicle[ A]. Proceedings of the American Control Conference[ C].Alaska:IEEE, 2002. 1108 - 1114.
  • 2Han J D, Campbell M. Artificial potential guided evolutionary path plan for target pursuit and obstacle avoidance[ A ]. American Institude of Aeronautics and Astronautics Guidance Navigation Control Conference[ C]. Austin:2003.
  • 3Maciejowski J. Modelling and predictive control: enabling technologies for reconfiguration [J]. Annual Review in Control, 1999,23(1):13-23.
  • 4Pesonen U, Steck J, Rokhsaz K. Adaptive neural network inverse controller for general aviation safety [ J ]. Journal of Guidance, Control,and Dynamics,2004,27 (3): 434 -443.
  • 5Julier S, Uhlmann J. Unscented filtering and nonlinear estimation[ J ]. Special Issue on Sequential State Estimation, 2004,92 ( 3 ) :401- 422.
  • 6Spong M, Vidyasagur M. Robot Dynamic and Control [ M ]. New York :John Wiley & Sons,1989.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部