期刊文献+

流域变换建模及其算法研究的新进展 被引量:9

Modeling for Watershed Trasform and Development of Watershed Algorithm
下载PDF
导出
摘要 流域变换是数学形态学中用于图象分割的一种经典方法 .虽然流域变换曾因运算量大、效率低而使得其研究工作遭到冷遇 ,但也因此出现了一些新的理论和算法 ,并随着并行手段的引入 ,又使其重新成为研究的热点 ;同时就近期许多研究成果而言 ,形式化模型的多样性 ,使得流域变换的定义、算法和实现 ,尚缺乏统一的描述和全面的总结 .针对这一情况 ,首先给出了连续域流域变换的严格数学模型和两种离散情况下典型的形式化定义 ;然后分类总结了近年来 ,流域变换算法实现的新进展 ;最后提出了有待进一步研究的问题 . Watershed transform is a classical method of image segmentation in mathematical morphology. This method, with a wide perspective, has been applied successively into some fields like remote sensing images processing of satellite and radar, biomedical and computer vision applications. Watershed transform is a relatively time consuming task, and the study of this problem has been disesteemed by researchers for its low efficiency. But also for this reason, there appear some new theories and algorithms; moreover, with the development of parallel tools, watershed transform has an increasing attention internationally. As to the resent literatures on this field, variety of formalizing model makes the definition, algorithm and implementation of watershed lack in uniform description. Pointing to this status this paper starts with a rigorous definition of watershed transform for continuous case, followed by two kinds of representative definitions for digital case. The solution of plateau problem is discussed in detail. Then some new watershed algorithms proposed in recent years are classified and analyzed, including watershed algorithms by immersion and by topographical distance. The need to distinguish between definition, algorithm specification and algorithm implementation is pointed out. Finally we present the problems and challenges of future research, including accuracy of watershed transform, problem of over-segmentation, parallelization of algorithms and so on.
出处 《中国图象图形学报》 CSCD 北大核心 2003年第1期11-17,共7页 Journal of Image and Graphics
基金 国家杰出青年科学基金资助项目 (6982 5 10 4)
关键词 流域变换 图象分割 集水盆 分水岭 浸没 地形学距离 Watershed transform, Image segmentation, Catchment basins, Watershed line, Immersion, Topographical distance
  • 相关文献

参考文献12

  • 1BEUCHER S,LANTUEJOUL C.Use of watersheds in contourdetection. Proc International Workshop on ImageProcessing . 1979
  • 2Vincent L.Graphs and mathematical morphology. Signal Processing . 1989
  • 3Meyer F.Topographic distance and watershed lines. Signal Processing . 1994
  • 4Dobrin B P,Viero T,Gabbouj M.Fast watershed algorithms:Analysis and extensions .Analysis and extensions. Pro-ceedings of IS & T/SPIE Symposium on Electronic ImagingScience&Technology,Nonlinear Image Processing V . 1994
  • 5Meijster A,Roerdink J B.A proposal for the implementation of a parallel watershed algorithm. In: Hlavac A, Sara R, Eds,Computer Analysis of Images and Patterns ( Lecture Notesion Computer Science ) [ M], Berlin: Springer-Verlag . 1995
  • 6Beucher S,Meyer F.The morphological approach to segmentation: the watershed transformation. In: Dougherty E R, Ed, Mathematical Morphology in Image Processing [ M],New York: Marcel Dekker . 1993
  • 7Meijster A,Roerdink J B.Computation of watersheds based on parallel graph algorithms. In: Maragos P, Ed,Mathematical Morphology and its Applications to Image and Signal Processing [ M], Dordrecht USA: Kluwer Acad. Publ . 1996
  • 8Beucher S.Watershed, hierarchical segmentation and waterfall algorithm. In: Serra J, Soille P, Eds, Mathematical Morphology and its Applications to Image Processing [ M ] . 1994
  • 9Vincent L,Soille P.Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1991
  • 10Roerdink J B,Meijster A.The watershed transform:definitions, algorithm and parallelization strategies. Fundamenta Informaticae . 2000

同被引文献60

  • 1孙涵,任明武.基于链码的分水岭变换算法[J].中国图象图形学报(A辑),2004,9(9):1025-1031. 被引量:12
  • 2赵英男,杨静宇.基于Gabor滤波器和SVM分类器的红外车辆检测[J].计算机工程,2005,31(10):191-192. 被引量:7
  • 3陆秀峰,刘西拉,覃维祖.从混凝土二维截面推测骨料粒径分布[J].岩石力学与工程学报,2005,24(17):3107-3112. 被引量:21
  • 4[2]Cox I J,Rao S B,Zhong Y.Ratio regions:A technique for image segmentation.Proc Int'l Conf Pattern Recognition,1996;557-564
  • 5[3]Shi J,Malik J.Normalized cuts and image segmentation.Proc IEEE CS Conf Computer Vision and Pattern Recognition,1997 ;731-737
  • 6[4]Shi J,Malik J.Normalized cuts and image segmentation.IEEE Trans Pattern Analysis and Machine Intelligence,2000;22 (8):888-905
  • 7[5]Soundararajan P,Sarkar S.Analysis of mincut,average cut,and normalized cut measures.Proc Third Workshop Perceptual Organization in Computer Vision,2001
  • 8[6]Sarkar S,Soundararajan P.Supervised learning of large perceptual organization:graph spectral partitioning and learning automata.IEEE Trans Pattern Analysis and Machine Intelligence,2000,22 (5):504-525
  • 9[7]Jermyn H,Ishikawa H.Globally optimal regions and boundaries.Proc Seventh Int'l Conf Computer Vision,1999:904-910
  • 10[8]Veksler O.Image segmentation by nested cuts.Proc IEEE CS Conf Computer Vision and Pattern Recognition,2000:339-344

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部