摘要
The deep seismic sounding profile across the Tianshan Mountains revealed a two-layer crustal structure in the Tianshan region, namely the lower and upper crusts. Lateral variations of layer velocity and thickness are evidently shown. Low-velocity layers spread discontinuously at the bottom of the upper crust. The Mono depth is 47 km in the Kuytun area and 50 km in the Xayar area. In the Tianshan Mountains, the Moho becomes deeper with the maximum depth of 62 km around the boundary between the southern and northern Tianshan Mountains. The average velocity ranges from 6.1 to 6.3 km/s in the crust and 8.15 km/s at the top of the upper mantle. Two groups of reliable reflective seismic phases of the Moho (Pm1 and Pm2) are recognized on the shot record section of the Kuytun area. A staked and offset region, 20-30 km long, is displayed within a shot-geophone distance of 190-210 km in Pm1 and Pm2. Calculation shows that the Moho is offset by 10 km in the northern Tianshan region, 62 km deep in the south while
The deep seismic sounding profile across the Tianshan Mountains revealed a two-layer crustal structure in the Tianshan region, namely the lower and upper crusts. Lateral variations of layer velocity and thickness are evidently shown. Low-velocity layers spread discontinuously at the bottom of the upper crust. The Mono depth is 47 km in the Kuytun area and 50 km in the Xayar area. In the Tianshan Mountains, the Moho becomes deeper with the maximum depth of 62 km around the boundary between the southern and northern Tianshan Mountains. The average velocity ranges from 6.1 to 6.3 km/s in the crust and 8.15 km/s at the top of the upper mantle. Two groups of reliable reflective seismic phases of the Moho (Pm1 and Pm2) are recognized on the shot record section of the Kuytun area. A staked and offset region, 20–30 km long, is displayed within a shot-geophone distance of 190–210 km in Pm1 and Pm2. Calculation shows that the Moho is offset by 10 km in the northern Tianshan region, 62 km deep in the south while 52 km deep in the north, and plunges northwards. In comparison with typical collisional orogenic belts, the structure of the Moho beneath the Tianshan Mountains presents a similar pattern. This can be used to explain the subduction of the Tarim plate towards the Tianshan Mountains. This intracontinental subduction is considered the dynamic mechanism of the Cenozoic uplifting of the Tianshan Mountains. The discovery of seismic phases Pm1 and Pm2 serves as the seismological evidence for the northward subduction of the Tarim plate.