期刊文献+

A class of quasisymmetric mappings with substantial points 被引量:1

A class of quasisymmetric mappings with substantial points
下载PDF
导出
摘要 It is proved that Kq(h)=K0(h) for every h in some class of quasisymmetric mappings of the unit circle with substantial points, where Kq(h):=sup{M(h(Q))/M(Q); Qis a quadrilateral with the domain unit disk} and K0(h) is the extremal maximum dilatation of h. It is proved thatK q (h)=K 0(h) for everyh in some class of quasisymmetric mappings of the unit circle with substantial points, whereK q (h):=sup{M(h(Q))/M(Q);Q is a quadrilateral with the domain unit disk} andK 0(h) is the extremal maximum dilatation ofh.
机构地区 Peking Univ
出处 《Chinese Science Bulletin》 SCIE EI CAS 2000年第4期313-316,共4页
关键词 quasisymmetric MAPPING EXTREMAL MAPPING substantial point. quasisymmetric mapping extremal mapping substantial point
  • 相关文献

参考文献14

  • 1漆毅.A problem in extremal quasiconformal extensions[J].Science China Mathematics,1998,41(11):1135-1141. 被引量:2
  • 2Yi Qi.A problem in extremal quasiconformal extensions[J]. Science in China Series A: Mathematics . 1998 (11)
  • 3S. Wu.Moduli of quadrilaterals and extremal quasiconformal extensions of quasisymmetric functions[J]. Commentarii Mathematici Helvetici . 1997 (4)
  • 4J. M. Anderson,A. Hinkkanen.Quadrilaterals and extremal quasiconformal extensions[J]. Commentarii Mathematici Helvetici . 1995 (1)
  • 5Kurt Strebel.On the existence of extremal Teichmueller mappings[J]. Journal d’Analyse Mathématique . 1976 (1)
  • 6Kurt Strebel.Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des Einheitskreises[J]. Commentarii Mathematici Helvetici . 1962 (1)
  • 7Strebel,K.Zur Frage der Eindentigkeit extremaler quasikonformer Abbildungen des Einheitskreises, Comment Math. Helv . 1962
  • 8Strebel,K.On the existence of Teichmuller mappings, J. Analysis Mathematica . 1976
  • 9Fehlmann,R.Quasiconformal mappings with free boundary components, Ann.Acad. Sci. Fenn . 1982
  • 10Wu,S.J.Moduli of quadrilaterals and extremal quasiconformal extensions of quasisymmetric functions,Comment.Math. Helv . 1997

二级参考文献11

  • 1Yang,S .S.Extremalquasiconformalextensions. Preprints . 1993
  • 2AndersonJM,HinkkanenA.Quadrilateralsandextremalquasiconformalextensions. CommentMathHelv . 1995
  • 3F.P. Gardiner,D.P. Sullivan.Symmetric structures on a closed curve. American Journal of Mathematics . 1992
  • 4Reich,E.Anapproximationconditionandextremalquasiconformalextensions,Proc. Amer.Math . 1997
  • 5Wu,S .J.Moduliofquadrateralsandextremalquasiconformalextensionsofquasisymmetricfunctions,Comment.Math. Helv . 1997
  • 6Earle,C .J,Li,Z.IsometricallyembeddedpolydisksininfinitedimensionalTeichmllerspaces. J .Geom.Analysis .
  • 7Teichmller,O.Extremalquasikonformeabbidungenundquadratischedifferentiale. OswaldTeichmllerGesammelteAbhandungenCollectedPapers . 1982
  • 8Li,Z.QuasiconformalMappingsandTheirApplicationstoRiemannSurfaces. . 1988
  • 9Gardiner,F .P,Sullivan,D.Lacunaryseriesasquadraticdifferentialsinconformaldynamics. TheMathematicalLega cyofWilhelmMagnus:Groups,GeometryandSpecialFunctions . 1992
  • 10Reich,E,Strebel,K.Extremalquasiconformalmappingswithgivenboundaryvalues. ContributionstoAnalyses:ACollectionofPapersDedicatedtoLipmanBers . 1974

共引文献1

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部