摘要
According to the characteristics of welding process, this paper divided the welding joint of a weldment into three zones: the liquid zone in the molten pool, the solid liquid co existing zone and the solid zone. In order to develop the stress/strain numerical model, the mechanical behaviors of the three zones were analyzed in detail. Moreover, Based on the solid fractions during solidification process and loading unloading deforming curves of stainless steel SUS310, this paper also studied the effects of deformation of molten pool, the rheologic properties and solidification shrinkage on stress/strain evaluating processes. Finally, the influence of the deformation in the molten pool was eliminated by element rebirth method. Furthermore, the algorithm of the thermal stress/strain for the solid metal formulated on the basis of the incremental thermo elastoplastic constitutive theory. As a result, a numerical simulation model of stress/strain distributions for welding solidification crack was developed.
According to the characteristics of welding process, this paper divided the welding joint of a weldment into three zones: the liquid zone in the molten pool, the solid liquid co existing zone and the solid zone. In order to develop the stress/strain numerical model, the mechanical behaviors of the three zones were analyzed in detail. Moreover, Based on the solid fractions during solidification process and loading unloading deforming curves of stainless steel SUS310, this paper also studied the effects of deformation of molten pool, the rheologic properties and solidification shrinkage on stress/strain evaluating processes. Finally, the influence of the deformation in the molten pool was eliminated by element rebirth method. Furthermore, the algorithm of the thermal stress/strain for the solid metal formulated on the basis of the incremental thermo elastoplastic constitutive theory. As a result, a numerical simulation model of stress/strain distributions for welding solidification crack was developed.