摘要
Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical system with nilpotent linear part and Z(2)-asymmetry are computed. According to normal forms obtained, universal unfoldings for some degenerate bifurcation cases of codimension 3 and simple global characterizations, are studied.
Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical system with nilpotent linear part and Z(2)-asymmetry are computed. According to normal forms obtained, universal unfoldings for some degenerate bifurcation cases of codimension 3 and simple global characterizations, are studied.