期刊文献+

n 维无究延滞的 Liénard 型方程的周期解 被引量:2

Periodic Solutions of n-dimensional Liénard Equations with Infinite Retardation
下载PDF
导出
摘要 讨论具有周期扰动项的n维无穷延滞的Liénard型方程x¨+2F(x)x2x+g(t,xt)=p(t)的周期解,给出了存在周期解的一些充分性判据. The problem of the periodic solutions for n-dimensional Liénard equations with infinite retardation of the following form is discussed x¨+ 2F(x)x 2+g(t,x t)=p(t). some new conditions which guarantee the existence of periodic solutions are given.
作者 彭世国
出处 《广东工业大学学报》 CAS 1997年第2期20-26,共7页 Journal of Guangdong University of Technology
关键词 非线性方程 滞后型 周期解 Nonlinear Equations retarded type Periodic Solutions
  • 相关文献

参考文献2

二级参考文献5

  • 1丁伟岳,数学学报,1982年,25卷,5期
  • 2葛渭高,数学年刊.A,1990年,11卷,3期,297页
  • 3张芷芬,微分方程定性理论,1985年
  • 4黄启昌,非线性微分方程,1983年
  • 5丁伟岳,数学学报,1982年,25卷,5期,627页

共引文献14

同被引文献14

  • 1JIN C H, LUO J W. Asymptotic stability of differential e- quations with several delays [J]. Publ Math Debrecen, 2011, 78( 1 ) :89-102.
  • 2YORKE J A. Asymptotic stability for one-dimensional func- tional differential-delay equations [J]. Differential Equa- tions, 1970, 7 ( 1 ) : 189-202.
  • 3KRISZTIN T. On the stability properties for one dimension- al functional equations [J]. Funkcial Ekvac, 1991, 34 (2) :241-256.
  • 4YONEYAMA T. On the stability theorem for one-dimen- sional functional delay-differential equation [ J ]. J Math A- nal, 1987, 125(4):161-173.
  • 5YONEYAMA T. On the stability for the delay-differential e- quation [J]. J Math Anal Appl, 1986, 120(1) :271-275.
  • 6HARA T, YONEYAMA T, MIYAZAKI R. Some refine- ments of Razumikhin' s method and their applications [ J ]. Funkciak Ekvac, 1992 (2) , 35 : 279-305.
  • 7MUROYA Y. On Yoneyama' s stability theorems for one- dimensional delay differential equations [ J]. J Math Anal Appl, 2000, 247( 1 ) :314-322.
  • 8GRAEF J R, QIAN C, ZHANG B. Asymptotic behavior of solutions of differential equations with variable delays [ J]. Proc London Math Soc, 2000, 81(1 ):72-92.
  • 9BURTON T A. Stability by fixed point theory or Lia- punocv' s theory : a comparison[ J]. Fixed Point Theo13' , 2003, 4( 1 ) :15-32.
  • 10BURTON T A, Furumochi T. Krasnoselskii' s fixed point theorem and stability [ J ]. Nonlinear Anal,2002, 49 (4) : 445-454.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部