期刊文献+

Asymptotic Theory for Estimation of Error Distribution in Linear Model 被引量:5

Asymptotic Theory for Estimation of Error Distribution in Linear Model
全文增补中
导出
摘要 For a linear model, let the error sequence be i.i.d, with common unknown density f(x), and (x) be a nonparametric estimator of f(x) based on the residuals. In this paper, on the basis of [1], we establish the L_1-norm consistency, asymptotic normality and law of iterated logarithm for (x) under general condition. These results bring the asymptotic theory for estimation of error distributions to completion. For a linear model, let the error sequence be i.i.d, with common unknown density f(x), and (x) be a nonparametric estimator of f(x) based on the residuals. In this paper, on the basis of [1], we establish the L<sub>1</sub>-norm consistency, asymptotic normality and law of iterated logarithm for (x) under general condition. These results bring the asymptotic theory for estimation of error distributions to completion.
出处 《Science China Mathematics》 SCIE 1993年第4期408-419,共0页 中国科学:数学(英文版)
基金 Project supported by the National Natural Science Foundation of China.
关键词 linear model error distribution L_1-norm eonsisteney asymptotic normality law of iterated logarithm. linear model error distribution L<sub>1</sub>-norm eonsisteney asymptotic normality law of iterated logarithm.
  • 相关文献

同被引文献11

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部