期刊文献+

基于天气类型聚类识别的光伏系统短期无辐照度发电预测模型研究 被引量:161

Short-term PV Generation System Forecasting Model Without Irradiation Based on Weather Type Clustering
原文传递
导出
摘要 现有光伏发电量预测模型大多以太阳辐照度作为必要的输入,然而,由于当前国内太阳辐射站点仍较稀少且预报能力较低,因此此类预报方法难于实施。利用距离分析方法分析光伏发电量与气象因素间的相关性,确定以气温和湿度作为预报输入因子,建立反传播(back propagation,BP)神经网络的无辐照度发电量短期预报模型。此外,为适应天气突变,采用自组织特征映射(self-organizing feature map,SOM)由云量预报信息对天气类型聚类识别,继而对各天气类型采用相应的预测网络,避免了单神经网络的过拟合问题。通过与含辐照度输入及无天气聚类识别的预测模型做交叉对比实验,预测结果表明,天气类型聚类识别能显著提高预测精度,无辐照度光伏发电量短期预测模型有较高的精度和50%湿度抗扰动性。 Most of photovoltaic(PV) generation forecasting models need to take solar irradiance as their input parameters.However,they were difficult to implement in China due to insufficient solar radiation stations available and poor performance of forecasting.After investigating the correlation among PV generation and several meteorological elements through distance analysis,a back propagation(BP) neural network forecasting model was proposed whose input parameters were ambient temperature and humility.Furthermore,in order to adapt sudden weather changes,the future weather type was recognized from forecasted cloud cover by using self-organizing feature map(SOM).Then,PV power generation in each weather type could be forecasted from its corresponding forecast network.Therefore,the over fitting issue of single network model could be addressed.Comparison experiments were made as opposed to the forecasting model with radiation observation and the one without weather type classification.The experimental results indicate that weather type clustering can significantly improve the precision of power prediction,and that the short-term forecasting model without irradiance with high precision can withstand 50% disturbance with humidity.
出处 《中国电机工程学报》 EI CSCD 北大核心 2011年第34期28-35,共8页 Proceedings of the CSEE
基金 国家重点基础研究发展计划项目(973项目)(2010CB227206) 科技部公益性行业(气象)科研专项(GYHY201006036) 中央高校基本科研业务费专项资金资助(HUST2010MS102)~~
关键词 光伏发电量短期预测 神经网络 气象因素 自组织特征映射聚类 距离分析 short-term photovoltaic(PV) generation forecasting neural networks meteorological elements self-organizing feature map(SOM) clustering distance analysis
  • 相关文献

参考文献20

  • 1Rikos E, Tselepis E, Hoyer-Klick C, et al. Stability and power quality issues in microgrids under weather disturbances study of photovoltaie integration[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2008, 1(3): 170-180.
  • 2Alquthami T, Ravindra H, Faruque M O, et al. Study of photovoltaic integration impact on system stability using custom model of PV arrays integrated with PSS/E[C]// 2010 North American Power Symposium, Arlington, TX, USA: Institute of Electrical and Electronics Engineers, 2010: 1-8.
  • 3Paatero J V, Lund P D. Effects of large-scale photovoltaic power integration on electricity distribution networks [J]. Renewable Energy, 2007, 32(10): 216-234.
  • 4Duffle J A, Beckman W A. Solar engineering of thermal processes[M]. New York: John Wiley&Sons, 1991: 47-141.
  • 5Ehnberg J S G, Bollen M H J. Simulation of global solar radiation based on cloud observations [J]. Solar Energy, 2005, 78(2): 157-162.
  • 6Kern E C, Culachenski E M, Ken G A. Cloud effects on distributed photovoltaic generation: slow transients at the gardner, massachusetts photovoltaic experiment[J]. IEEE Transactions on Energy Conversion, 1989, 4(2).- 184-190.
  • 7雷绍兰,孙才新,周湶,张晓星,程其云.基于径向基神经网络和自适应神经模糊系统的电力短期负荷预测方法[J].中国电机工程学报,2005,25(22):78-82. 被引量:71
  • 8Methaprayoon K, Lee W J, Rasmiddatta S, et al. Multistage artificial neural network short-term load forecasting engine with front-end weather forecast [J]. IEEE Transactions on Industry Applications, 2007, 43(6): 1410-1416.
  • 9袁铁江,晁勤,李义岩,吐尔逊.伊不拉音.大规模风电并网电力系统经济调度中风电场出力的短期预测模型[J].中国电机工程学报,2010,30(13):23-27. 被引量:86
  • 10范高锋,王伟胜,刘纯,戴慧珠.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123. 被引量:360

二级参考文献107

共引文献1444

同被引文献1306

引证文献161

二级引证文献2176

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部