期刊文献+

基于成像模型的车道线检测与跟踪方法 被引量:16

Lane Detection and Following Algorithm Based on Imaging Model
原文传递
导出
摘要 针对结构化道路上存在非车道线标记干扰的情况,提出一种基于成像模型的线扫描车道线检测及跟踪方法。检测算法中首先对路面图像进行形态学高帽变换预处理,然后建立前方道路图像的成像模型,将图像坐标系中车道参数和世界坐标系中实际车道参数对应,对图像进行初扫描,利用边缘贡献函数及RANSAC算法选取最确定线后,以此线为标准进行二次扫描,得到边缘点后统计边缘贡献函数局部最大值并拟合成直线车道线。跟踪算法中运用Kalman滤波器预测车道线区域,并提取符合标准的控制点拟合成模型为B样条的车道线。试验结果表明:该方法能够快速准确地在复杂环境中提取多个车道线,尤其对存在非车道线道路标记干扰的情况有显著效果。 Considering the interruption of non-lane road markings,authors presented a lane detection and following algorithm on the basis of imaging model.In detection stage,lane image was firstly preprocessed by a morphological top-hat transform,imaging model was created for building relationship of lane parameters of the image coordinate and the world geodesic system(WGS) coordinate.Then the image was scanned for the first time on the basis of imaging model,after that,the edge distribution function(EDF) and RANSAC algorithm were used for the most sure lane detection.Based on the imaging model and the most sure lane,the image was scanned for the second time,local maximum values of EDF which were fitted to straight lane were recorded after the edge points.In following stage,Kalman filter was used for searching lane area,then B-spline model was applied to the lane fitting.Test results show that the proposed algorithm can efficiently and accurately detect and follow multiple lanes in the complex environments,particularly in the presence of interruption of non-lane road markings.
出处 《中国公路学报》 EI CAS CSCD 北大核心 2011年第6期96-102,共7页 China Journal of Highway and Transport
基金 国家自然科学基金创新研究群体基金项目(40721001) 教育部高等学校博士学科点专项科研基金项目(20070486001)
关键词 交通工程 车道线检测与跟踪 成像模型 梯度贡献函数 KALMAN滤波 traffic engineering lane detection and following imaging model edge distribution function Kalman filter
  • 相关文献

参考文献13

  • 1BATAVIA P H,PONERI.EAU D A,THORPE C E Predicting I.ane Position for Roadway Departure Pre vention[C]//IEEE. Intelligent Vehicles Symposium Stuttgart : IEEE, 1998 : 28-30.
  • 2BERTOZZI M, BROGGI A ,CELLARIO M, et al. Artificial Vision in Road Vehicles[J]. Proceedings of the IEEE,2002,90(7) :1258-1271.
  • 3CHEN M,JOCHEM T, POMERI.EAU D, et al.Aurora:a Vision-based Roadway Departure Warning System[C]//IEEE. Intelligent Robots and Systems. Pittsburgh:IEEE, 1995 .. 243-248.
  • 4POMERLEAV D,THORPE C, EMERY L. Performance Specification Development for Roadway De-parture Collision Avoidance Systems[C]//IEEE. Proceedings of 4th World Congress on Intelligent Trans- portation Systems. Berlin: IEEE, 1997:21-24.
  • 5BERTOZZI M, BROGGI A. GOLD; a Parallel Realtime Stereo Vision System for Generic Obstacle and Lane Detection[J]. IEEE Transactions on Image Processing,1998,7(1): 62-81.
  • 6BROGGI A. Robust Real-time Lane and Road Detec tion in Critical Shadow Condidons[C]//IEEE. Pro ceedings of International Symposium on Computer Vi sion. Coral Gables : IEEE, 1995 : 353-358.
  • 7PAETZOI.D F, FRANKE U, VON SEEI.EN W. et al. Lane Recognition in Urban Environment Using Optimal Control Theory [C]//IEEE. Intelligent Vehicles Symposium. Dearborn : IEEE, 2000 : 221-226.
  • 8YU B,JAIN A K. I.ane Boundary Detection Using a Multiresolution Hough Transform[C]//IEEE. International Conference on Image Processing. Washington DC: IEEE, 1997 : 748-751.
  • 9GERN A, MOEBUS R, FRANKE U. Vision-based I.ane Recognition Under Adverse Weather Conditions Using Optical Flow [C]//IEEE. Intelligent Vehicles Symposium. Versailles : IEEE, 2002 : 652-657.
  • 10KREUCHER C, LAKSHMANAN S. I.ana: a I.ane Extraction Algorithm That Uses Frequency Domain Features[J]. IEEE Transactions on Robotics and Automation, 1999,15(2) :343-350.

同被引文献158

  • 1丛杨,唐延东.基于光流方程和目标匹配的视频图像目标跟踪方法[J].红外与激光工程,2006,35(z4):312-315. 被引量:6
  • 2周欣,黄席樾.高速公路多车道分道线快速检测与重建技术[J].中国公路学报,2005,18(2):107-111. 被引量:9
  • 3金辉,吴乐林,陈慧岩,龚建伟.结构化道路车道线识别的一种改进算法[J].北京理工大学学报,2007,27(6):501-505. 被引量:28
  • 4知远战略与防务研究所.未来战斗系统中的无人平台[EB/OL].[2003-12-01].http:∥WWW.defence.org.cn/aspnet/vip-usa/uploadfiles/200499123112935.pdf.
  • 5ANDRESEN F, DAVIS L,EASTMAN R,et al. Visual Al- gorithms for Autonomous Navigation [ C ]//Proc. of IEEE Int' 1 Conf. on Robotics and Automation. Maryland: [ s. n. ] ,1985:856-861.
  • 6MONTERMERLO M, BECKER J, BHAT S,et al. Jun- ior : The Stanford Entry in the Urban Challenge [ J ]. Jour- nal of Field Robotics, 2008,25(9) : 569-597.
  • 7NXP. About NXP Semiconductors [ EB/OL ]. [ 2011-09- 06 ]. http : J//www. cn. nxp. com/infocus/topics/darpa/.
  • 8SARAH G. Boss Wins DARPA' S Urban Challenge [ EB/ OL]. [ 2007-11-21 ]. http: // thefutureofthings, com/ news/lO38/boss-wins-darpas-urban-challenge, html.
  • 9VAPNIK V N. The Nature of Statistical Learning Theory [ M ]. New York : Springer, 2000 : 123-170.
  • 10BLEI D M, NG A Y, JORDAN M L. Latent Dirichlet Allocation [ J ]. Journal of Machine Learning Research, 2003 ( 3 ) :993-1022.

引证文献16

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部