期刊文献+

使用干细胞机制优化反向传播神经网络 被引量:1

Optimizing Back Propagation Neural Network Using Stem Cell Mechanism
原文传递
导出
摘要 借鉴细胞学中的干细胞理论,提出了基于干细胞机制的进化神经网络(SCEABPNN),以实现误差反向传播神经网络(BPNN)的优化。SCEABPNN不需要遗传神经网络(GABPNN)中的编码、解码、交叉、变异等操作,把网络中的结点看成细胞,通过细胞移植、细胞置换、细胞凋亡操作进行网络优化。仿真结果证实,SCEABPNN不但可以全局收敛,有效解决BPNN易陷局部最小的问题,而且收敛速度比GABPNN和标准BPNN更快。 A new algorithm,SCEABPNN for short,was proposed based on stem cell mechanism in cytology to optimize the back propagation neural network(BPNN).SCEABPNN does not need such operations as encoding,decoding,crossover,mutation in genetic back propagation neural network(GABPNN).It treats a node in a neural network as a cell and optimizes a neural network by such operations as cell transplantation,cell replacement and cell apoptosis and so on.Simulation results confirm that SCEABPNN can ensure a BPNN escape from local minimum to converge globally and its convergence speed is higher than GABPNN and standard BPNN.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第12期2629-2634,2646,共7页 Journal of System Simulation
基金 国家重点基础研究发展计划(973计划)(2008CB317107)
关键词 BP神经网络 干细胞机制 优化算法 机器学习 back propagation neural network stem cell mechanism optimizing algorithm machine learning
  • 相关文献

参考文献6

二级参考文献50

  • 1黄敬频,周永权.可调激活函数递进提升输出维的选参方法[J].数学的实践与认识,2005,35(1):142-148. 被引量:3
  • 2吴佑寿.利用输入信号先验知识构造某些分类神经网络的研究[J].中国科学(E辑),1996,26(2):140-144. 被引量:5
  • 3[1]wu Youshou, Zhao Mingsheng, The neural model with tunable activation function and its supervised learning and application, Science in China (in Chinese), Ser. E, 2001, 31(3): 263-272.
  • 4[2]Segee, B. E., Using spectral techniques for improved performance in ANN, Proc IEEE, 1993, 500-505.
  • 5[3]Lee, S., Kil, R. M., A Gaussian potential function network with hierarchically self-organizing learning, Neural Network, 1991,4: 207-224.
  • 6[4]Stork, D. G., Allen, J. D. et al., How to solve the N-bit parity problem with two hidden units, Neural Networks,1992, 5: 923-926.
  • 7[5]Stork, D. G., A replay to Brown and Kom, Neural Networks, 1993, 6: 607-609.
  • 8[6]Wu, Y. S., A new approach to design a simplest ANN for performing certain special problems, in Proceedings of the International Conference on Neural Information Proceeding, Beijing, 1995, 477-480.
  • 9[7]Wu, Y. S., The research on constructing some group neural networks by the known input signal, Science in China(in Chinese), Ser. E, 1996, 26(2): 140-144.
  • 10[8]Wu, Y. S., Zhao, M. S., Ding, X. Q., A new artificial neural network with tunable activation function and its application, Science in China (in Chinese), Set. E, 1997, 27(1): 55-60.

共引文献75

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部