期刊文献+

基于手指运动方向的动态碰撞检测算法及实现 被引量:3

Dynamic Collision Detection Algorithm Based on Direction of Fingers Grasping Virtual Object and Implementation
原文传递
导出
摘要 通过对虚拟手抓握物体时手指运动过程的分析,提出基于手指运动方向的动态碰撞检测算法,在详细描述该算法的基础上,给出算法流程图、算法实现框图和应用实例。针对单个手指与球体的接触过程,将此动态碰撞检测算法和传统的静态碰撞检测算法进行性能测试比较,结果证实该动态碰撞检测算法在总体性能上优于传统静态碰撞检测算法,主要体现在提高了抓握操作仿真过程中碰撞检测阶段的运行速度、解决了抓握操作中以多面体模型之间的碰撞检测仿真实体模型之间的碰撞检测问题。该动态碰撞检测算法并可以推广应用于其他动态碰撞检测仿真。 A new algorithm of collision detection based on direction of fingers moving was put forward on the analysis of movement of fingers grasping virtual object.The algorithm was described in detail,and the flow charts of the algorithm and implementation were given as follows.Also,the comparison was conducted between this dynamic collision detection algorithm and the traditional static one of collision detection of one finger and sphere,and the result indicates that the performance of the algorithm of this paper is faster than the traditional static one.At the same time,this algorithm can be used to simulate solid models by polyhedron models in collision detection of fingers grasping object.This dynamic algorithm can also be applied to other dynamic collision detection simulation systems.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第12期2676-2681,共6页 Journal of System Simulation
基金 中国航天医学工程预先研究项目(2007SY5413006) 国防基础科研计划(B1620080001)
关键词 碰撞检测 抓握操作 虚拟手 面模型 实体模型 collision detection algorithm grasp operation virtual hand polyhedron model solid model
  • 相关文献

参考文献7

  • 1S Gottschalk, M C Lin, D Manocha. OBBTree: A Hierarchical Structure for Rapid Interference Detection [C]// Proceedings of SIGGRAPH' 96. USA: ACM, 1996: 171-180.
  • 2G van den Bergen. A fast and Robust GJK implementation for collision detection for convex objects [J]. Journal of Graphics Tools (S1086-7651), 1999, 4(2): 7-25.
  • 3M Lin, J Canny. A fast algorithm for incremental distance calculation [C]//IEEE Int. Conf. Robot. Automat, Sacramento, CA, USA, Apr, 1991. USA: IEEE, 1991: 1008-1014.
  • 4Y Sato, M Hirata, T Maruyama, Y Arita. Efficient Collision Detection using Fast Distance-Calculation Algorithms for Convex and Non- Convex Objects [C]// Proceedings for the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, USA, April 1996. USA: IEEE, 1996: 771-778.
  • 5S Cameron. Enhancing GJK: Computing minimum and penetration distances between convex pllyhedra [C]//Proc. IEEE Int. Conf. on Robotics and Automation, 1997. USA: IEEE, 1997:3112-3117.
  • 6Katsuaki Kawachi, Hiromasa Suzuki. Distance Computation between Non-convex Polyhedra at Short Range Based on Discrete Voronoi Regions [C]// Geometric Modeling and Processing 2000, April 10-12, 2000, Hong Kong, China. USA: IEEE. 2000: 123-128.
  • 7唐勇,冯立颖,吕梦雅.基于轴向包围盒碰撞检测算法的改进[J].系统仿真学报,2009,21(1):157-160. 被引量:10

二级参考文献6

  • 1潘振宽,李建波.基于压缩的AABB树的碰撞检测算法[J].计算机科学,2005,32(2):213-215. 被引量:23
  • 2G van den Bergen. Efficient Collision Detection of Complex Deformable Models Using AABB Trees [J]. Journal of Graphics Tools (S1086-7651), 1997, 2(4): 1-13.
  • 3Gottschalk S, Lin M C, Manocha D. OBB-Tree: A Hierarchical Structure for Rapid Interference Detection [C]// Proc. the ACM of SIGGRAPH'96. USA: ACM, 1996:171-180.
  • 4Klosowski JT, Held M, Mitchell JSB, Sowizral H, Zikan K. Efficient collision detection using bounding volume hierarchies of k-DOPs. [J]. [EEE Trans. on Visualization and Computer Graphics (S1077-2626), 1998, 4(1): 21-36.
  • 5Ehmann SA, Lin MC. Accurate and fast proximity queries between polyhedra using convex surface decomposition [J]. Computer Graphics Forum (S0167-7055), 2001 : 500-510.
  • 6Wan HG, Fan ZW, Gao SM, et al. A Parallel Collision Detection Algorithm Based on Hybrid Bounding Volume Hierarchy. [C]// Proceedings of CAD & Graphics'2001, Hongkong: International Academic Publishers LTD, 2001 : 521-528.

共引文献9

同被引文献40

  • 1王天柱,李文辉,王祎,崔虎,冯广慧.基于组件的虚拟手建模及碰撞检测[J].吉林大学学报(理学版),2006,44(4):599-605. 被引量:6
  • 2Oman CM. Spatial orientation and navigation in microgravity [C]//Mast F, Jancke L. Spatial Processing in Navigation, Imagery and Perception, Springer, New York, 2007, 209- 247.
  • 3Oman CM,Shebilske WL, Richards .IF, et al. Three dimen- sional spatial memory and learning in real and virtual environ- ments[J]. Spat Cogn Comput, 2000, 2(4) : 355-372.
  • 4Harm DL, Parker DE. Preflight adaptation training for spatial orientation and space motion sickness [J]. J Clin Pharmacol, 1994, 34(6) : 618-627.
  • 5Riehards JT, Oman CM, Shebilske WL, et al. Training, transfer, and retention of three-dimensional spatial memory in virtual environments [ J]. J Vestib Res, 2002, 12 (5-6) : 223-238.
  • 6Vidal M, Amorim MA, et al. Navigating in a virtual three-di- mensional maze: how do egocentric and allocentric reference frames interact? [ J]. Cognitive Brain Research, 2004, 19 (3) : 244-258.
  • 7Oman CM. 2003 Human visual orientation in weightlessness [ C]//Harris L, Jenkin M. Levels of Perception, Springer- Verlag, New York: 375-398.
  • 8Oman CM,Benveniste D, Aoki H, et al. Spacecraft module visual verticals and training affect spatial task performance [Jl. Habitation, 2006; 10: 202-203.
  • 9Small RL,Oman CM, Jones TD. Space shuttle flight crew spatial orientation survey results[J]. Aviation, Space, and Environmental Medicine, 2012, 83 (4) : 383-387.
  • 10Aoki H,Oman CM, Buckland DA, et al. Desktop-VR system for preflight 3D navigation training [ J ]. Acta astronautica, 2008, 63(7) : 841-847.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部