期刊文献+

约束Minimax问题的SQP-Filter算法及收敛性 被引量:2

SQP-Filter Algorithm for Constrained Minimax Problem and Its Convergence
下载PDF
导出
摘要 提出了一个求解带等式和不等式约束的Minimax问题的SQP-Filter算法,每步通过求解2个二次规划子问题来得到搜索方向,并沿该方向做线搜索。该算法避免了较难的罚因子的选取,克服了Maratos效应,并在适当的假设条件下,得到了算法的全局收敛性。 In this paper, a SQP - Filter algorithm is proposed for solving minimax problems with equality and inequality constraints. In each step, a quadratic programming sub-problem is solved to get the search direction which is used as line search. This method avoids the difficulty of selecting the penalty factor and overcomes Maratos effects successfully. Its global convergence is attained under some suitable conditions.
出处 《西华大学学报(自然科学版)》 CAS 2011年第6期61-64,共4页 Journal of Xihua University:Natural Science Edition
基金 国家自然科学基金(11071041) 福建省自然科学资金(2009J01002) 福建省教育厅项目(JA11270)
关键词 运筹学 MINIMAX问题 SQP-Filter算法 全局收敛性 opsearch minimax problem SQP - Filter method global convergence
  • 相关文献

参考文献12

  • 1Fletcher, Gould NIM, Leyffer S, et al. Global Convergence Of A Trust Region SQP-filter Algorithm for General Nonlinear Programming [ J]. SIAM Journal On Optimization, 2002, 13:635.
  • 2薛毅.求解Minimax优化问题的SQP方法[J].系统科学与数学,2002,22(3):355-364. 被引量:26
  • 3朱志斌,张可村.Minimax问题的一个超线性收敛的SQP算法[J].数值计算与计算机应用,2005,26(3):161-176. 被引量:4
  • 4苏珂,濮定国.一类积极集SQP滤子方法[J].同济大学学报(自然科学版),2008,36(5):690-694. 被引量:4
  • 5Fletcher R, Leyffer S. Nonlinear Programming Without A Penalty Function [ J ]. Mathematical Programming,2002, 91 (2) :239.
  • 6Panier E R, Tits A L. A Superlinearly Convergent Feasible Method For The Solution of Inequality Constrained Optimization Problems. SIAM [J]. Control And Optimization, 1987,25:934-950.
  • 7Charelambous C and Conn A R. An Efficient Method To Solre The Minimax Problem Directly [ J]. SIAM J. Numer. Anal. , 1978,15:162 -187.
  • 8Zhou J L, Tits A L. Nonmonotone Line Search For Minimax Problem[ J] . JOTA, 1993,76:455 - 476.
  • 9周岩,濮定国.解约束优化问题的QP-free可行域方法(英文)[J].运筹学学报,2007,11(3):31-43. 被引量:5
  • 10Chen J S. The Semi - smooth-related Properties Of A Merit Function And A Descent Method For The Nonlinear Complementarity Problem[ J]. J Glob Optim, 2006, 36:565 - 580.

二级参考文献39

  • 1濮定国,李康弟,薛文娟.解约束优化问题的QP-free非可行域方法[J].同济大学学报(自然科学版),2005,33(4):525-529. 被引量:8
  • 2[1]Vardi A. New minimax algorithm. Journal of Optimization Theory and Application, 1992, 75(3):613-634.
  • 3[2]Luksan L. A compact variable metric algorithm for nonlinear minimax approximation. Computing, 36: 355-373.
  • 4Rall, Louis B., Automatic Differentiation: Techniques and Applications Lectures Notes in Computer Science. Springer Verlag, Berlin, Volume 120 (1981).
  • 5Vardi, A., New Minimax Algorithm, Journal of Optimization Theory and Application, 75:3 (1992), 613-634.
  • 6Luksan, L., A Compact Variable Metric Algorithm for Nonlinear Minimax Approximation, Computing, vol. 36 (1986), 355-373.
  • 7Charelambous, C., and A. R. Conn, An efficient method to solve the Minimax problem directly.SIAM J. Numer. Anal., 15(1978) 162-187.
  • 8Panier, E. R., and A. L. Tits, A Superlinearly Convergent Feasible Method for the Solution of Inequality Constrained Optimization Problems. SIAM J. Control and Optimization, 25(1987)934-950.
  • 9Facchinei, F., S. Lucidi, Quadraticly and Superlinearly Convergent for the Solution of Inequality Constrained Optimization Problem. JOTA, 85:2(1995) 265-289.
  • 10Bandler, J. W., and C. Charalambous, Nonlinear programming using minimax techniques. JOTA,13(1974) 607-619.

共引文献31

同被引文献4

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部