期刊文献+

支持向量机与神经网络在减振器建模中的应用 被引量:2

Applications of Support Vector Regression and Neural Network in Modelling the Hydraulic Damper
下载PDF
导出
摘要 提出了利用支持向量机回归建立减振器非参数模型的方法。之后,利用支持向量机建立的模型与两类神经网络模型进行了对比。一类是反向传播神经网络,另一类是径向基函数神经网络。这三种模型分别在虚拟减振器与真实减振器上进行了比较。比较结果证明反向传播神经网络对虚拟减振器的辨识结果最好,而支持向量机回归算法对真实减振器的辨识效果最好。其原因是由于真实减振器的试验数据均具有噪声,而支持向量机对噪声具有一定的鲁棒性。 Nonparametric models of hydraulic damper based on support vector regression(SVR) are developed.Then these models are compared with two kinds neural network models.One is backpropagation neural network(BPNN) model;another is radial basis function neural network(RBFNN) model.Comparisons are carried out both on virtual damper and actual damper.The force-velocity relation of a virtual damper is obtained based on a rheological model.Then these data are used to identify the characteristics of the virtual damper.The dynamometer measurements of an actual displacement-dependent damper are obtained by experiment.And these data are used to identify the characteristics of this actual damper.The comparisons show that BPNN model is best at identifying the characteristics of the virtual damper,but SVR model is best at identifying the characteristics of the actual damper.The reason is that all experimental data include noise more or less.When the amplitude of the noise is smaller than the parameter ε of SVR,the noise can not affect the construction of the resulting model.So when training a model based on the experimental data,SVR is superior to other neural networks methods.
出处 《科学技术与工程》 2011年第33期8219-8224,共6页 Science Technology and Engineering
基金 中国高水平汽车自主创新能力建设项目(200822010001531)资助
关键词 车辆模拟 支持向量机回归 神经网络 减振器 vehicle simulation support vector regression neural network hydraulic damper
  • 相关文献

参考文献12

  • 1Lang H. A study of the characteristics of automotive hydraulic damp- ers at high stroking frequency. PIA. D. thesis, University of Michigan, 1977.
  • 2Reybrouck K. A nonlinear parametric model of an automotive shock absorber. SAE Technical Papers, 940869 , 1994.
  • 3Lee K. Numerical modelling for the hydraulic performance prediction of automotive monotube dampers. Veh Syst Dyn,1997 ;28:25-39.
  • 4Besinger F H, Cebon D, Cole D J. Damper models for heavy vehicleride dynamics. Veh Syst Dyn, 1995 ;24:35-64.
  • 5Lion A, Loose S. A tbermomechanically coupled model for automotive shock absorbers: theory, experiments and vehicle simulations on test tracks. Veh Syst Dyn,2002;37:241-261.
  • 6Duym S, Stiens R, Reybrouck K. Evaluation of shock absorber models. Veh Syst Dyn, 1997 ;27 : 109-127.
  • 7Patel A, Dunne J F. NARX neural network modelling of hydraulic suspension dampers for steady-state and variable temperature operation. Veh Syst Dyn,2003 ;40:285-328.
  • 8Vapnik V N. Statistical learning theory. Johnwiley & Sons. New York, 1998.
  • 9Scholkopf B, Smola A J, Wil|iamson R C, et al. New support vector algorithms. Neural Comput ,2000 ; 12 : 1207-1245.
  • 10Flake G W, Lawrence S. Efficient SVM regression training with SMO. Mach Learn,2002 ; 46:271-290.

同被引文献17

  • 1王晶,靳其兵,曹柳林.面向多输入输出系统的支持向量机回归[J].清华大学学报(自然科学版),2007,47(z2):1737-1741. 被引量:24
  • 2于霖冲,白广忱,焦俊婷,李辉.无润滑机构系统考虑摩擦和柔性影响的动态响应神经网络预测[J].润滑与密封,2006,31(4):45-47. 被引量:5
  • 3Paola M D, Ricciardi G, Vasta M. A method for the probabilistic analysis of nonlinear systems[J]. Probabilistic Engineering Mechanics, 1995, 10(1).. 1-10.
  • 4Dai Hongzhe, Zhang Hao. Structural reliability assessment by local approximation of limit state functions using adaptive markov chain simulation and support vector regression[J]. Computer-Aided Civil and lnfrastructureEngineering, 2012, 27: 676-686.
  • 5Smola A J. Learning with kernels[D]. Berlin: Teehnische University, 1998.
  • 6Rocco C M, Moreno J A. Fast Monte Carlo reliability evaluation using support vector machine[J]. Reliability Engineering and System Safety, 2002, 76(3): 237-243.
  • 7Hurtado J E. An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory[J]. Structural Safety, 2004, 26.. 271-279.
  • 8于霖冲,白广忱,焦俊婷.柔性机构动态强度可靠性分析理论和方法研究[J].机械强度,2007,29(6):956-959. 被引量:8
  • 9马超,吕震宙.基于支持向量机回归的结构系统可靠性及灵敏度分析方法[J].固体力学学报,2007,28(4):415-419. 被引量:6
  • 10Dai H Z, Zhang H. Structural reliability assessment by local approximation of limit state functions using adaptive markov Chain simulation and support vector regression [ J]. Computer-Aided Civil and Infra- structure Engineering ,2012,27(9) : 676-686.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部