期刊文献+

基于ε-支配的自适应多目标进化算法 被引量:2

ε-dominance based adaptive multi-objective evolutionary algorithm
下载PDF
导出
摘要 提出一种新的基于ε-支配关系的自适应多目标进化算法(AEMOEA)。在每次的进化中保留端点,并从端点集中选取一个作为父本,参加进化,弥补了ε-MOEA算法中端点易被丢掉的缺陷;在进化过程中根据存档动态地调整ε的取值,使解的分布更加均匀;当存档中个体过多时,运用ε-支配关系进行剪切,使其个体数处在合理水平。通过5个常用双目标测试函数的计算,验证了该算法在求解质量上优于ε-MOEA、NAGA-II以及SPEA-2等主流多目标算法。 A novel multi-objective evolutionary algorithm,called ε -dominance based adaptive multi-objective evolutionary algorithm(AEMOEA),is proposed.As the improvement to ε -MOEA,the boundary points easily discarded before are reserved in AEMOEA and one of them is chosen as parent to take part in each evolution.In addition,the ε value is dynamically modified with the archive in every generation to find a well-distributed set of solutions.Finally,when the archive is over-sized, ε -dominance is used to reduce it to a proper number.The proposed AEMOEA algorithm is tested on five bi-objective benchmark test functions,and the experimental results demonstrate that AEMOEA outperforms other MOEAs such as ε -MOEA, NAGA-II and SPEA-2.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第34期39-43,共5页 Computer Engineering and Applications
关键词 多目标优化 多目标进化算法 ε-支配 ε-自适应调整 multi-objective optimization multi-objective evolutionary algorithm ε-dominance ε-adaptive
  • 相关文献

参考文献18

  • 1Schaffer J D.Multiple objective optimization with vector evaluated genetic algorithms[C]//Proceedings of the 1st International Conference on Genetic Algorithm and Their Applications, 1985.
  • 2Horn J,Nafpliotis N,Goldberg D E.A niched Pareto genetic algorithm for multiobjective optimization[C]//Proceedings of the International Conference on Evolutionary Computation, 1994:82-87.
  • 3Srinivas N, Deb K.Muiltiobjective optimization using nondominated sorting in genetic algorithms[J].Evolutionary Computation, 1994,2(3) :221-248.
  • 4Eekart Z, Lothar T.An evolutionary algorithm for multiobjective optimization:The Strength Pareto Approach, TIK-Report No.43[R]. Computer Engneering and Network Lab, 1998.
  • 5Zitzler E, Laurnanns M, Thiele L.SPEA2: improving the strength pareto evolutionary algorithm for mulfiobjective optimization [C]//Proceedings of the EUROGEN 2001,2001:95-100.
  • 6Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm: NSGA-II[J].IEEE Transactions on Evolutionary Computation, 2002,6 (2) : 182-197.
  • 7Knowles J D, Come D W.Approximating the nondominated front using the pareto archived evolution strategy[J].Evolutionary Computation, 2000,8 (2) :149-172.
  • 8Laumanns M, Thiele L, Deb K, et al.Combining convergence and diversity in evolutionary multiobjective optimization[J].Evolutionary Computation, 2002,10 (3) : 263-282.
  • 9Deb K, Mohan M, Mishra S.Evaluating the t-domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions[J].Evolutionary Computation,2005, 13 (4) :501-525.
  • 10SchQtze O,Laumanns M,CoelIo C A,et al.Convergence of stochastic search algorithms to finite size pareto set approximations[J].Joumal of Global Optimization,2008,41(4):559-577.

二级参考文献11

  • 1石川,李清勇,史忠植.一种快速的基于占优树的多目标进化算法[J].软件学报,2007,18(3):505-516. 被引量:14
  • 2刘淳安,王宇平.动态多目标优化的进化算法及其收敛性分析[J].电子学报,2007,35(6):1118-1121. 被引量:21
  • 3郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 4ELMUSRATI M,EL-SALLABI H,KOIVO H.Applications of multi-objective optimization techniques in radio resource scheduling of cellular communication systems[J].IEEE Transactions on Wireless Communications,2008,7(1):343-353.
  • 5DASHENG L,TAN K C,GOH C K.A particle swarm algorithm for multiobjective design optimization[J].IEEE Transactions on Systems Man and Cybernetics,2007,37(1):42-50.
  • 6HO S L,YANG S Y,ZHANG G.A particle swarm optimizationbased method for multi-objective design optimizations[J].IEEE Transactions on Magnetics,2005,41(5):1756-1759.
  • 7VALENZUELA C L.A simple evolutionary algorithm for multi-objective optimization (SEAMO)[C]//CEC' 02:Proceedings of the 2002 Congress on Evolutionary Computation.Honolulu:IEEE,2002:717-722.
  • 8DEB K,MOHAN M,MISHRA S.Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solution[J].Evolutionary Computation,2005,13(4):501-525.
  • 9LAUMANNS M,THIELE L,DEB K,et al.Combining convergence and diversity in evolutionary multiobjective optimization[J].Evolutionary Computation,2002,10(3):263-282.
  • 10李密青,郑金华,罗彪,伍军,文诗华.一种基于邻域的多目标进化算法[J].计算机应用,2008,28(6):1570-1574. 被引量:5

共引文献33

同被引文献10

  • 1宁爱兵,马良.0/1背包问题快速降价法及其应用[J].系统工程理论方法应用,2005,14(4):372-375. 被引量:9
  • 2郑金华,蒋浩,邝达,史忠植.用擂台赛法则构造多目标Pareto最优解集的方法[J].软件学报,2007,18(6):1287-1297. 被引量:54
  • 3Komviriyavut T, Sangkatsanee P, Wattanapongsakorn N, et al.Network intrusion detection and classification with decision tree and rule based approaches[C]//9th Interna- tional Symposium on Communications and Information Technology, 2009: 1046-1050.
  • 4Folino G,Pizzuti C,Spezzano G.An ensemble-based evo- lutionary framework for coping with distributed intru- sion detection[J].Genetic Programming and Evolvable Machines, 2010, 11.
  • 5Wang Juan, Yang Qiren, Ren Dasen.An intrusion detection algorithm based on decision tree technology[C]//Asia-Pacific Conference on Information Processing,2009,2 : 333-335.
  • 6邹海明;余祥宣.计算机算法基础[M]武汉:华中工学院出版社,1985.
  • 7康立山.非数值并行算法(第一册)模拟退火算法[M]北京:科学出版社,1995.
  • 8KALYANMOY DEB,AMRIT PRATAP,SAMEER AGRAWAL AND T. A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,(02).
  • 9吴剑.基于特征选择的无监督入侵检测方法[J].计算机工程与应用,2011,47(26):79-82. 被引量:7
  • 10刘瑞,许峰.基于ε支配擂台赛法则的多目标遗传算法[J].软件导刊,2012,11(8):53-55. 被引量:2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部