期刊文献+

支持向量回归预测蛋白质残基的B因子 被引量:2

Prediction of B-factor profile from sequence using support vector regression
原文传递
导出
摘要 蛋白质分子的柔性在各种生物进程中如酶催化、蛋白质分子绑定和识别等发挥着重要的作用。研究蛋白质分子柔性有助于更好地理解蛋白质的功能,研究证明从X射线晶体衍射结构而来的B因子能够较好的衡量蛋白质分子的柔性。从蛋白质序列出发,以保守信息、预测的二级结构、预测的相对溶剂可及性和氨基酸4种物理化学性质作为特征向量,利用支持向量回归方法对蛋白质的B因子进行预测。考察了邻近残基的影响,采用滑动窗口方法对所有特征变量进行了处理。通过对位置特异得分矩阵的平滑窗口处理,提高了预测精度。以皮尔逊相关系数为算法评价指标,最终得到独立测试集的皮尔逊相关系数为0.56,表明该方法有效提高预测精度。 B-factor from X-ray crystal structure can well measure protein structural flexibility,which plays an important role in different biological processes,such as catalysis,binding and molecular recognition.Understanding the essence of flexibility can be helpful for the further study of the protein function.In this study,we predicted B-factor profile from sequence by using support vector regression(SVR).Here, amino acid sequence information including position-specific scoring matrix(PSSM) profiles,predicted secondary structure,predicted relative solvent accessibility and physicochemical properties were employed to features.To consider the influence of the neighboring residues of an amino acid,a sliding window is used to encode the features.A smoothing window is used to encode PSSM profiles.Pearson correlation coefficient(CC) was used as the performance measure.CC value was 0.56 for the independent dataset.The result showed that the prediction accuracy can be improved.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2011年第11期1477-1480,共4页 Computers and Applied Chemistry
基金 国家自然科学基金资助(20775052 20972103)
关键词 B因子 平滑窗口 支持向量回归 B-factors smooth window support vector regression
  • 相关文献

参考文献15

  • 1Schnell J R, Chou J J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 2008, 451:591-U512.
  • 2Pan X Y, Shen H B. Robust prediction of B-factor profile from sequence using two-stage SVR based on random forest feature selection. Protein and Peptide Letters, 2009, 16:1447-1454.
  • 3Zhang H, Zhang T, Chen K, Shen S Y, Ruan J S, Kurgan L. On the relation between residue flexibility and local solvent accessibility in proteins. Proteins:Structure Function and Bioinformatics, 2009, 76:617-636.
  • 4Smith D K, Radivojac P, Obradovic Z, Dunker A K, Zhu G Improved amino acid flexibility parameters. Protein Science, 2003, 12:1060-1072.
  • 5Yuan Z, Bailey T L, Teasdale R D. Prediction of protein B-factor profiles. Proteins:Structure Function and Bioinformatics, 2005, 58:905-912.
  • 6Wang C C, Fang Y P, Xiao J M, Li M L. Identification of RNA-binding sites in proteins by integrating various sequence information. Amino Acids, 2010:239-248.
  • 7Sehlessinger A, Rost B. Protein flexibility and rigidity predicted from sequence. Proteins:Structure Function and Bioinformaties, 2005, 61:115-126.
  • 8Jones D T. Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 1999, 292:195-202.
  • 9Fisher E W, Rojnuckarin A, Kim S. Effects of local repositioning of charged surface residues on the kinetics of protein dimerization probed by Brownian dynamics simulations. Journal of Molecular Structure-Theochem, 2002, 592:37-45.
  • 10Chakravarty S, Varadarajan R. Residue depth: a novel parameter for the analysis of protein structure and stability. Structure, 1999, 7:723-732.

二级参考文献7

共引文献7

同被引文献17

  • 1Vapnik V N. Statistical Learning Theory[M]. New York .. Wiley, 1998.
  • 2Jiang H, Wang Z. GMRVVm-SVR Model for Financial Time Series Forecasting[J]. Expert Systems with Applications, 2010,37(12).
  • 3Kim K. Financial Time Series Forecasting Using Support Vector Machines[J]. Neurocomputing, 2003,55.
  • 4Tay F E H, Cao L J. Modified Support Vector Machines in Financial Time Series Forecasting[J]. Neurocomputing, 2002,48(1-4).
  • 5He W, Wang Z, Jiang H. Model Optimizing and Feature Selecting for Support Vector Regression in Time Series Forecasting[J]. Neurocomputing, 2008.
  • 6Yang H, Huang K I, King, Lyu M tL Localized Support Vector Regression for Time Series Prediction[J]. Neurocomputing, 2009,72(10-12).
  • 7Jiang H, He W. Grey Relational Grade in Local Support Vector Regression for Financial Time Series Prediction[J]. Expert Systems with Applications, 2012,39(3).
  • 8Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998(2).
  • 9Bottou L, Vapnik V N. Local Learning Algorithm[J]. Neural Computation, 1992,4(6).
  • 10Fernandez tL Predicting Time Series with A Local Support Vector Vegression Machine[EB/OL]. 1999. http.//www. lit. demokritos, gr/skel/eetn/acai99/.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部