期刊文献+

边缘检测与混合高斯模型相融合的运动目标检测算法 被引量:4

Moving object detection method based on edge detection and Gaussian mixture model
下载PDF
导出
摘要 针对传统的混合高斯模型不能很好地处理突变的情况,提出了一种新的运动目标检测算法。该算法在时间域上对混合高斯模型的更新机制进行了改进,并对模型加入了帧间处理,提取出初步的运动目标;在空间域上,通过Canny边缘检测算子获得初步的运动目标边缘轮廓,利用图像金字塔的多分辨特性排除背景噪声,经过一定运算再次得到运动目标。将两次得到的运动目标作"与运算",提取出最终的运动目标。实验结果表明,本算法可以较好地处理突变情况,提取的运动目标图像完整、轮廓清晰。 Aiming at the fact that the traditional Gaussian mixture model can not deal with the mutations effectively, this paper proposes an improved moving object detection algorithm. The model's updating mechanism is improved on the time domain, while joining frame disposal to the model, and obtain the preliminary moving object. Canny edge detection operator is used to get the edge figure on the space domain, and extract the preliminary outline of the moving object. Using the multi-resolution characteristics of the image-pyramid to eliminate the noise in background region, perform further operation, and extract the preliminary moving object again. Obtain the result by logic and processing for these two objects. Experiments show that this algorithm can effectively handle the mutation, and improve motion detection precision.
出处 《微型机与应用》 2011年第23期43-45,50,共4页 Microcomputer & Its Applications
基金 国家自然科学基金(60778007)
关键词 边缘检测 混合高斯模型 运动目标检测 背景减除 edge detection Guassian mixture model moving object detection background subtraction
  • 相关文献

参考文献9

  • 1赵文哲,秦世引.视频运动目标检测方法的对比分析[J].科技导报,2009,27(10):64-70. 被引量:26
  • 2甘新胜,赵书斌.基于背景差的运动目标检测方法比较分析[J].指挥控制与仿真,2008,30(3):45-50. 被引量:28
  • 3LEE D S. On line adaptive Gaussian mixture learning for video applications [C]. Statistical Methods in Video Processing, LNCS3247, 2004,3247 : 105-116.
  • 4Arandje|ovic O, CIPOLLA R. Incremental learning of temporally -coherent Gaussian mixture models [C]. Proceedings of British Machine Vision Conference, Oxford, UK, 2005:759-768.
  • 5陈祖爵,陈潇君,何鸿.基于改进的混合高斯模型的运动目标检测[J].中国图象图形学报,2007,12(9):1585-1589. 被引量:37
  • 6STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking [C]. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Fort Collins: IEEE Press, 1999: 246-252.
  • 7STAUFFER C, GRIMSON W E L. Learning patterns of activity using real-time tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747-757.
  • 8SCHINDLER K, Wang Hanzi. Smooth forgmund-background segmentation for video processing[J]. Lecture Notes in Computer Science, 2006, 3852:581-590.
  • 9李亚玲,徐荣青,聂桂军,田俊青,姚晓宇.适应场景光照变化的运动目标检测算法[J].计算机技术与发展,2011,21(2):140-142. 被引量:9

二级参考文献63

共引文献95

同被引文献38

  • 1李俊山,马颖,赵方舟,郭莉莎.改进的Canny图像边缘检测算法[J].光子学报,2011,40(S1):50-54. 被引量:64
  • 2侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 3杨国亮,王志良,牟世堂,解仑,刘冀伟.一种改进的光流算法[J].计算机工程,2006,32(15):187-188. 被引量:27
  • 4肖梅,韩崇昭.基于在线聚类的背景减法[J].模式识别与人工智能,2007,20(1):35-41. 被引量:9
  • 5HStauffer C, Grimson W E L Adaptive background mixture models for real-time tracking. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition; Fort Collins: IEEE Press, 1999:246-252.
  • 6Kim K, Chalidabhongse T H, Harwood D, et al. Background Model- ing and Subtraction by Codebook Construction . International Confer- ence on Image Processing; New York: IEEE Press, 2004 : 3061-3064.
  • 7Sigari M, Hoseyn M F. Real-time background modeling/subtraction using two-layer codebook model, Proceedings of the International MultiConference of Engineers and Computer Scientists. 2008 : 1.
  • 8Doshi A, Trivedi M. Hybrid cone-cylinder codebook model for fore- ground detection with shadow and highlight suppression. Proceedings of IEEE International Conference on Video and Signal Based Surveil- lance, Sydney: IEEE Press, 2006:19-19.
  • 9Prati A, Mikic I, Trivedi M M. Detecting moving shadows: Algo- rithms and Evaluation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2003 ;25(7) :918-923.
  • 10Canny J. A computational approach to edge detection. Pattern Analy- sis and Machine Intelligence, IEEE Transactions on, 1986 ; ( 6 ) : 679-698.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部