期刊文献+

基于微元法的高精度系统响应矩阵建模 被引量:2

System Response Matrix Modeling with High Accuracy Via Infinitesimalanalysis
下载PDF
导出
摘要 系统响应矩阵是以矩阵形式表征的从激励到响应的数值化关系。由于绝大多数正电子发射成像的重建算法都包含正投影和反投影的计算步骤,系统响应矩阵精度是研究者普遍关心的重要因素之一。通过对系统响应矩阵进行微元法建模,提高了系统响应矩阵的精度。数值结果显示,随着微元的尺寸变小,64点微元正投影的信噪比提高了100倍以上1,6线微元反投影的信噪比提高了7个数量级。 System response matrix is the numerical relation from excitation to response.Cause most medical image reconstruction employ forward projection and backward projection,system response matrix is one of the essential issues attracted many researchers' attention.It proposes a infinitesimalanalysis method for modeling the system response matrix.Accuracy of system response matrix is improved.Numerical experiment show that SNR(Signal Noise Ratio) of forward projection is increased to more than 1 000 times via 64 pixel tiny block,and SNR(Signal Noise Ratio) of backward projection is raised by two orders of magnitude.
出处 《核电子学与探测技术》 CAS CSCD 北大核心 2011年第10期1125-1130,共6页 Nuclear Electronics & Detection Technology
基金 国家自然科学基金(60972099) 科技部国际合作重点项目(2009DFR30580)
关键词 微元法 系统响应矩阵建模 PET图像重建 Infinitesimalanalysis method System response matrix PET image reconstruction
  • 相关文献

参考文献12

  • 1J. Qi,R. H. Huesman. Effect of errors in tile systemmatrix on maximum a posteriori image reconstruction [J].Phys. Med. Biol. ,2005,50(14):3297-3312.
  • 2J. Qi, R. M. Leahy, S. R. Cherry, et al. High resolution 3D Bayesian image reconstruction using the microPET small animal scanner[J].Phys. Med. Biol. ,1998,43 (4) :1001 -1013.
  • 3A.R. Formiconi, A. Pupi, A. Passeri. Compensation of spatial system response in SPECT with conjugate gra- dient reconstruction technique[ J ] ,Phys. Med. Biol. , 1989,34(1) :69 -84.
  • 4I. Laurette, G. L. Zeng, A. Welch, et al. A three - di- mensional ray - driven attenuation, scatter and geo- metric response correction technique for SPECT in in- homogeneous media[ J ]. Phys. Med. Biol. ,2000,45 ( 11 ) : 3459 - 3480.
  • 5R. Siddon. Fast calculation of the exact radiological path for a three dimensional CT array [J ] . bled. Phys. , 1985,12 (2) :252 - 255.
  • 6Peters T. Algorithms for fast back - and re - projec- tion in computed tomography [ J ]. IEEE Trans. Nucl. Sei. , 1981,28 (4) :3641 - 3647.
  • 7W. Zhuang,S. S. Gopal,T. J. Hebert. Numerical eval- uation of methods for computing tomographic projec- tions [ J !. IEEE Trans. Nucl. Sci. , 1994, 41 (4) : 1660 - 1665.
  • 8R.H. Huesman, G. J. Klein, W. W. Moses, et al. 2000 last mode m&ximum likelihood reconstruction applied to positron emission mammography ~'ith irregular sam-piing[ J ], IEEE Trans. Med. Imag., 2000, 19 ( 5 ) : 532 - 537.
  • 9H. Kudrolli, W. Worstell, V. Zavarzin, et al. SS3D - fast fully 3D PET iterafive reconstruction using sto- chastic sampling[ J ]. IEEE Trans. Nucl. Sci. ,2002, 49( 1 ) :124 - 130.
  • 10C. E. Floyd, R. J. Jaszezak, R. E. Coleman. Inverse Monte Carlo: a unified reconstruction algorithm for SPECT[ J ]. IEEE Trans. Nucl. Sci. , 1985,32 ( 1 ) :779 - 785.

同被引文献23

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部