期刊文献+

自适应车流方向的跨道行人检测 被引量:2

Crossing Pedestrians Detection Adapted to Traffic Flow Direction
下载PDF
导出
摘要 针对视频交通事件监控中的行人检测问题,提出一种自适应车流方向的跨道行人检测算法。利用运动历史图像计算画面中物体的运动方向,通过学习获得运动参考方向场,并对运动目标进行跟踪。依据参考方向场分析其轨迹的走向,以确定运动目标是否发生跨道行为。实验结果表明,该算法能适应车流方向并有效检测跨道行人,具有较好的实时性和较高的检测成功率。 For video traffic events detection,a novel algorithm to detect crossing pedestrians is researched,which can be adaptive to the direction of traffic flows.It calculates the motion directions of objects in the video by Motion History Image(MHI) motion history images.A referenced motion direction field is obtained at learning step.When an object is tracked,its trajectory will be analyzed on line.Its motion direction is compared with the direction defined by the referenced motion direction field,which results in whether it is a crossing pedestrian.Experimental results show that this algorithm has the ability to adapt the traffic flow direction,and that it can run at real time with great accuracy.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第21期141-143,共3页 Computer Engineering
基金 广东省科技计划基金资助项目(2008B080701005) 广东省科技计划国际合作基金资助项目(2010B080701070)
关键词 行人检测 智能监控 车流方向 运动历史图像 参考方向场 pedestrian detection intelligent monitoring traffic flow direction Motion History Image(MHI) referenced direction field
  • 相关文献

参考文献6

二级参考文献52

  • 1李斌,史忠科.基于计算机视觉的行人检测技术的发展[J].计算机工程与设计,2005,26(10):2565-2568. 被引量:16
  • 2郭烈,王荣本,顾柏园,余天洪.世界智能车辆行人检测技术综述[J].公路交通科技,2005,22(11):133-137. 被引量:18
  • 3贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 4胡建华,徐健健.交通监控系统中车辆和行人的检测与识别[J].电子测量技术,2007,30(1):16-17. 被引量:13
  • 5Bennett N, Burridge R, Saito N. A Method to Detect and Characterize Ellipses Using the Hough Transform[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1999, 21(7): 652-657.
  • 6Graham R L. An Efficient Algorithm for Determining tile Convex Hull of a Finite Planar Set[J]. Information Processing Letters, 1972, 26(1): 132-134.
  • 7Viola P, Jones M, Snow D. Detecting pedestrians using patterns of motion and appearance [ A ]. Proceedings of International Conference on Computer Vision[ C]. Washington DC, USA:IEEE, 2003.734 - 741.
  • 8Zhao L, Thorpe C. Stereo and neural network-based pedestrian detecdon[J ]. IEEE Transactions on Intelligent Transportation Systems,2000, 1(3) : 148 - 154.
  • 9Oren M, Papageorgiou C, Sinha P, Osuna E, Poggio T. Pedestrian detection using wavelet templates[ A]. Proceedings of IEEE Conference on Computer Vision and Pattem Recognition[C ]. San Juan,Puerto Rico: IEEE, 1997. 193 - 199.
  • 10Mohan A, Papageorgiou C, Poggio T. Example-based object detection in images by components[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23(4) : 349 - 361.

共引文献42

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部