期刊文献+

自然图像中的感兴趣目标检测技术 被引量:2

Object of Interest Detection Technology in Natural Image
下载PDF
导出
摘要 基于显著图的目标检测方法不能精确地找到感兴趣目标的位置,或在同一感兴趣目标上检测出多个感兴趣区域。为此,提出一种视觉注意机制和模糊支持向量机(FSVM)相结合的算法。根据显著度和角点分布信息,从图像中获得包括单个目标的视觉窗口,并在窗口中采用FSVM算法分割目标和背景。实验结果表明,该方法符合生物的视觉注意机制,分割效果较好。 Saliency map based the Region of Interesting(ROI) detection often has the problems of not able to locate object of interesting accurately and that many interesting object can be detected on the same ROI.A new technique for detecting regions of interest in a natural image by using visual attention model and Fuzzy Support Vector Machine(FSVM) is proposed.A visual window including single object is created according to the visual attention and edge information based on distribution of corner points from an image.By using FSVM based on affinity among samples,it can extract single object in the visual window.Experimental results show that it coincides with human visual attention mechanism and demonstrate the effectiveness of the proposed approach.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第21期173-175,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60902085) 上海市教育委员会科研创新基金资助项目(10ZZ118)
关键词 感兴趣目标 显著图 模糊支持向量机 视觉注意 特征提取 object of interest saliency map Fuzzy Support Vector Machine(FSVM) visual attention feature extraction
  • 相关文献

参考文献6

  • 1Itti L, Koch C. Computational Modeling of Visual Attention[J]. Nature Reviews Neuroscience, 2001, 2(3): 194-203.
  • 2Ko B C, Nam J Y. Object-of-interest linage Segmentation Based on Human Attention and Semantic Region Clustering[J]. Journal of Optical Society of America, 2006, 23(10): 2462-2470.
  • 3Wu C Y, Leou J J, Chen H Y. Visual Attention Region Determi- nation Using Low-level Features[C]//Proc. of IEEE International Symposium on Circuits and Systems. Taipei, China: [s. n.], 2009: 3178-3181.
  • 4Rosten E, Drummond T. Machine Learning for High Speed Corner Detection[C]//Proc. of European Conference on Computer Vision. Graz, Austria: [s. n.], 2006: 430-443.
  • 5范剑英,王松涛,夏静,李金.基于模糊神经网络的纸币清分方法[J].计算机工程,2009,35(18):188-190. 被引量:1
  • 6张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法[J].软件学报,2006,17(5):951-958. 被引量:84

二级参考文献6

  • 1金野,刘松波,刘家锋,宋玲,唐降龙.一种基于边缘特征的纸币污损检测方法[J].计算机研究与发展,2007,44(2):258-264. 被引量:5
  • 2Kang D, Raveendran P, Omatu S. Algorithm to Discriminate Between New and Used Bills Using a Neural Network[C]// Proceedings of the 9th Int'l Conf. on Database and Expert Systems Applications, Digital Object Identifier. [S. l.]: IEEE Press, 1998.
  • 3Takeda F, Omatu S. High Speed Paper Currency Recognition by Neural Networks[J]. IEEE Trans. on Neural Network, 1995, 6(1): 73-77.
  • 4Wu Shiqian, Meng Joo Er, Yang Gao. A Fast Approach for Automatic Generation of Fuzzy Rules by Generalized Dynamic Fuzzy Neural Networks[J]. IEEE Transactions on Fuzzy Systems, 2001, 9(4): 578-594.
  • 5刘家锋,刘松波,唐降龙.一种实时纸币识别方法的研究[J].计算机研究与发展,2003,40(7):1057-1061. 被引量:42
  • 6张翔,田金文,肖晓玲,柳健.支持向量机及其在医学图像分类中的应用[J].信号处理,2004,20(2):208-212. 被引量:29

共引文献83

同被引文献23

  • 1C. Harris, M. Stephens. A combined corner and edge detector[C]. Proceedings of the 4th Alvey Vision Conference, 1988.147-151.
  • 2H. Bay, A. Ess, T. Tuytelaars et al.. SURF: Speeded up robust features[C]. ECCV Graz, Austria, 2006.
  • 3E. Rosten, T. Drummond. Fusing points and lines for high performance tracking[C]. 10th IEEE International Conferenceon Computer Vision, Beijing, China, 2005, volume 2, 1508-1515.
  • 4E. Rosten, T. Drummond. Machine learning for high-speed corner detection[C]. European Conference on Computer Vision,2006.
  • 5G. Klein, D. Murray. Parallel tracking and mapping on a camera phone[C]. In Proc. International Symposium on Mixed and Augmented Reality, Orlando. 2009.
  • 6Markerless Augmented Reality on iPhone 3Gs. http://ml.sun.ac.za/people/carel-van-wyk/.
  • 7D. G. Lowe. Object recognition from local scale-invariant features[C]. International Conference on Computer Vision, Corfu, Greece, September 1999.
  • 8M. Calonder, V. Lepetit, C. Strecha et al.. BRIEF: Binary Robust Independent Elementary Features[C]. ECCV 2010.
  • 9Zhang L, Yang K. Region -of- lntere+st Extraction Based on Frequency Domain Analysis anti Salient Region Detection for Remote Sensing Im- age[ J]. 1EEE CEO SCIENCE AND REMOTE SENSING I+ETI'ERS, 2014,11 (5) :916 -920.
  • 10Li J, I,evine M D, An X ,e! al. Visual saliency based on scale -space a- nalysis in the frequency domain[ J]. Pattern Analysis and Machine In- telligence, IEEE Transactions on ,2013,35 (4) :996 - 1010.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部