期刊文献+

三维成像声纳图像后处理与可视化 被引量:3

Post-processing and Visualization for Three-dimension Imaging Sonar Image
下载PDF
导出
摘要 针对基于线阵合成孔径技术的三维成像声纳缺乏有效后处理与可视化方法的问题,提出一个适用于三维成像声纳图像后处理与可视化方案。鉴于水体和地层2种介质具有不同的声学特性,使用组合算法分离水体和地层数据,利用基于边缘梯度均值约束的三维自适应区域生长算法分别对水底和地层目标进行检测,融合水体和地层数据,采用光线投射法进行三维实验数据的可视化。湖试和近海海试结果表明,该方案能够适应声成像中水体与地层的不同特点,有效检测目标,提高声纳图像的表现能力。 In view of the absence of post-processing and visualization method for three-dimension imaging sonar based on line array synthetic aperture,an effective post-processing and 3D visualization scheme is proposed in this paper.Considering the difference of acoustic characteristics between water and seafloor,the two sets of data are separated using merged image processing algorithms,followed by a modified 3D adaptive region growing algorithm based on the mean of edge gradient to detect the targets in them.The processed data are combined and visualized using the ray casting algorithm.Experimental result in lake and near sea demonstrates the effectiveness and robustness of the proposed scheme.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第22期196-197,共2页 Computer Engineering
基金 国家自然科学基金资助项目(60772092) 国家安全重大基础研究基金资助项目(5132103ZZT14B)
关键词 三维成像声纳 后处理方案 图像增强 目标检测 三维可视化 3D imaging sonar post-processing scheme image enhancement targets detection 3D visualization
  • 相关文献

参考文献5

  • 1Gonzalez R C,Woods R E.Digital Image Processing[M].Upper Saddle River,USA: Prentice-Hall,2002.
  • 2Del R V J,Coiras E,Groen J,et al.Automatic Target Recognition in Synthetic Aperture Sonar Images Based on Geometrical Feature Extraction[Z].[S.l.]: Hindawi Publishing Corporation,2009.
  • 3喻琪,夏顺仁,丛卫华,张峰山,杨晓帆.基于小波系数相关性和模糊理论的声纳图像处理[J].浙江大学学报(工学版),2008,42(12):2151-2155. 被引量:5
  • 4卞红雨,刘翠.基于修正二维熵的水声图像分割[J].计算机工程,2010,36(14):193-195. 被引量:3
  • 5Revol C,Peyrin F,Carrillon Y,et al.Automated 3D Region Growing Algorithm Based on an Assessment Function[J].Pattern Recognition Letters,2002,23(1): 137-150.

二级参考文献20

  • 1郭海涛,王连玉,田坦,张春田,孙鹤泉.利用二维属性直方图的Otsu自动阈值分割方法[J].光电子.激光,2005,16(6):739-742. 被引量:18
  • 2DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrika, 1994, 81 (3) : 425 - 455.
  • 3DONOHO D L.Denoising by soft-thresholding [J]. IEEE Transactions on Information Theory, 1995, 41:613 - 627.
  • 4CHANG S, YU B, VETTERLI M. Adaptive wavelet thresholding for image denoising and compression [J].IEEE Transactions on Image Processing, 2000, 9:1532 - 1546.
  • 5ZHAO Zhi-dong. Wavelet shrinkage denoising by generalized threshold function [C] // Proeeedings of the Fourth International Conference on Machine Learning and Cyberneties,Guangzhou,China:[s. n. ], 2005, 9:5501-5505.
  • 6CHEN G Y, BUI T D, KRZYZAK A. Image denoising using neighbouring wavelet coefficients [C]// International Conference on Acoustics, Speech, and Signal Processing. Quebec, Canada : [s. n. ],2004 : 917 - 920.
  • 7WU Ji-ying, RUAN Qiu-qi. Combining adaptive PDE and wavelet shrinkage in image dennising with edge enhancing property [C]// Proceedings of the 18th International Conference on Pattern Recognition. Washington: IEEE, 2006: 718-721.
  • 8LI Jun, CHEN Guang-meng, HU Bo. Image denoising based on fuzzy in wavelet domain [C] // Instrumentation and Measurement Technology Conference. Ontario, Canada: IEEE, 2005: 2019-2023.
  • 9LIU J, MOULIN P, Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients [J]. IEEE Transactions on Image Processing, 2001, 10(11) : 1647 - 1658.
  • 10MALLAT S, HWANG W L. Singularity detection and processing with wavelets [J]. IEEE Transactions on Information Theory, 1992, 32 : 617 - 643.

共引文献6

同被引文献27

引证文献3

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部