期刊文献+

基于带模型的叶绿素a浓度反演精度评估

The Uncertainty Model for Water Qualities Retrieval Results:A Case Study of Chlorophyll-a Concentration
下载PDF
导出
摘要 为了评估遥感反演叶绿素a浓度的精度,以2004年8月19日太湖38个水质样本数据和同步Hyperion卫星遥感影像数据为基础,借鉴四波段半分析算法,结合空间数据不确定性原理,构建了基于四波段半分析算法的"带模型"。通过研究与探讨可知,当叶绿素a浓度为10~20μg/L和50~100μg/L时,叶绿素a浓度的反演误差较小,大约为±20%;当叶绿素a浓度在20~50μg/L时,叶绿素a浓度的反演误差较大,大约为±40%,局部区段的误差高达±60%左右。与传统的误差表示方法相比较,"带模型"能更详细且能准确地给出太湖水体叶绿素a浓度反演结果的误差信息。 With the spectral experiment and the simultaneous observation results of Hyperion satellite on 19 August,2004 as the basic dataset,the authors used the uncertainty principle of spatial data to develop a "bands model" for chlorophyll-a concentration retrieval algorithm of the subsection mapping retrieval model.It is thus found that in the ranges of 10-20 μg/L and 50-100 μg/L,the retrieval error of chlorophyll-a concentration is relatively low,(approximately ±20%),whereas in the range of 20-50 μg/L,the retrieval error of chlorophyll-a concentration is relatively high,(approximately ±40%).A comparison with the traditional methods for error describing shows that the "bands model" could include more detailed and accurate information of data quality for remote sensing products.
出处 《国土资源遥感》 CSCD 2011年第4期83-86,共4页 Remote Sensing for Land & Resources
基金 国土资源部海洋油气资源和环境地质重点实验室基金项目(编号:MRE201109) 中国海陆地质地球物理系列图项目(编号:GZH200900504)共同资助
关键词 遥感 带模型 叶绿素A 太湖 Remote sensing Bands model Chlorophll-a Taihu Lake
  • 相关文献

参考文献17

  • 1Gordon H R, Castafio D J. Aerosol Analysis with the Coastal Zone Color Scanner:A Simple Method for Including Muhiple Scattering Effects [ J ]. Applied Optics, 1987,28 (7) : 1320 - 1326.
  • 2张民伟,唐军武,丁静.水色大气校正算法综述[J].海洋技术,2008,27(3):110-114. 被引量:6
  • 3Shafique N A, Autrey B C, Fulk F, et al. Hyperspectral Narrow Wavebands Selection for Optimizing Water Quality Monitoring on the Great Miami River, Ohio [ J ]. Journal of Spatial Hydrology, 2001,1(1) :1 -22.
  • 4李小文.定量遥感的发展与创新[J].河南大学学报(自然科学版),2005,35(4):49-56. 被引量:62
  • 5陈军,周冠华,温珍河,付军.遥感数据误差对地表参数定量反演可靠性的影响——以太湖叶绿素a反演为例[J].光谱学与光谱分析,2010,30(5):1347-1351. 被引量:6
  • 6Gahegan M,Ehlers M. A Framework for the Modeling of Uncertainty Between Remote Sensing and Geographic Information Systems [ J ]. ISPRS Journal of Photograrmnetry & Remote Sensing, 2000, 55 (3) :176 - 188.
  • 7Goodchild M F. Geographical Data Modeling [ J ]. Computers & Geosciences, 1992,18(4) :401 -408.
  • 8史文中,王树良.GIS中属性不确定性的处理方法及其发展[J].遥感学报,2002,6(5):393-400. 被引量:8
  • 9Perkal J. On Epsilon Length [ J ]. Bulletin de I'cademic Polonaise Des Sciences, 1956 (4) : 399 - 403.
  • 10Shi W Z, Ehlers M, Tempfli K. Analytical Modelling of Positional and Thematic Uncertainties in the Integration of Remote Sensing and Geographical Information System [ J ]. Transactions in GIS, 1999,3(2) :119 - 136.

二级参考文献99

共引文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部