期刊文献+

Lie group classification of the N-th-order nonlinear evolution equations 被引量:1

Lie group classification of the N-th-order nonlinear evolution equations
原文传递
导出
摘要 In this paper, Lie group classification to the N-th-order nonlinear evolution equation Ut : UNx + F(x, t, u, ux, . . . , U(N-1)x)is performed. It is shown that there are three, nine, forty-four and sixty-one inequivalent equations admitting one-, two-, three- and four-dimensionM solvable Lie algebras, respectively. We also prove that there are no semisimple Lie group 50(3) as the symmetry group of the equation, and only two realizations oral(2, R) are admitted by the equation. The resulting invariant equations contain both the well-known equations and a variety of new ones. In this paper, Lie group classification to the N-th-order nonlinear evolution equation ut=uNx + F(x1t1u1ux1, . . . 1u(N-1)x) is performed. It is shown that there are three, nine, forty-four and sixty-one inequivalent equations admitting one-, two-, three- and four-dimensional solvable Lie algebras, respectively. We also prove that there are no semisimple Lie group so(3) as the symmetry group of the equation, and only two realizations of sl(2, R) are admitted by the equation. The resulting invariant equations contain both the well-known equations and a variety of new ones.
出处 《Science China Mathematics》 SCIE 2011年第12期2553-2572,共20页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos.11001240, 10926082) the Natural Science Foundation of Zhejiang Province (Grant Nos. Y6090359, Y6090383) the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 10925104) the Natural Science Foundation of Shaanxi Province (Grant No. 2009JQ1003)
关键词 group classification Lie algebra nonlinear evolution equation 非线性演化方程 单李群 分类 N阶 对称方程组 UNX 李代数 方程式
  • 相关文献

参考文献27

  • 1Turkowski P.Low-dimensional real Lie algebras. Journal of Mathematical Physics . 1988
  • 2Zhdanov R,Lahno V.Group classification of the general second-order evolution equation: semi-simple invariance groups. Journal of Physics A Mathematical and General . 2007
  • 3Akhatov I,Gazizov R,Ibragimov N.Group classification of equations of nonlinear filtration. Proceedings of the National Academy of Sciences of the United States of America . 1987
  • 4Chou K S,Qu C Z.Optimal systems and group classification of (1+2)-dimensional heat equation. Acta Applicandae Mathematicae . 2004
  • 5Gungor F,Lahno V,Zhdanov R.Symmetry classification of KdV-type nonlinear evolution equations. Journal of Mathematical Physics . 2004
  • 6Huang Q,Lahno V,Qu C Z,Zhdanov R.Preliminary group classification of a class of fourth-order evolution equations. Journal of Mathematical Physics . 2009
  • 7Huang Q,Qu C Z,Zhdanov R.Classification of local and non-local symmetries of fourth-order nonlinear evolution equations. Reports on Mathematical Physics . 2010
  • 8Ibragimov N,Torrisi M,Valenti A.Preliminary group classification of equation vtt = f (x, vx)vxx + g (x, vx). Journal of Mathematical Physics . 1991
  • 9Lahno V,Zhdanov R.Group classification of nonlinear wave equations. Journal of Mathematical Physics . 2005
  • 10Torrisi M,Tracina R.Equivalence transformations and symmetries for a heat conduction model. International Journal of Non Linear Mechanics . 1998

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部