期刊文献+

带两个参数的四阶边值问题正解的存在性 被引量:3

Existence of Positive Solutions of a Fourth-Order Boundary Value Problem with Two Parameters
原文传递
导出
摘要 在不要求f非负的条件下,通过将边值问题转化成积分方程系统,并运用锥上的不动点指数理论研究带2个参数的四阶边值问题u(4)+βu″-αu=f(t,u),0<t<1u(0)=u(1)=u″(0)=u″(1)=0正解的存在性,其中:f:[0,1]×[0,+∞)-→R是连续的;α,β∈R满足β≤0,α≥-(β2)/4,α/(π4)+β/(π2)<1或满足β<2π2,α≥0,α/(π4)+β/(π2)<1. In the case of not requiring f to be nonnegative,by transforming the boundary value problem into the integral equation system and applying the fixed point index theory in cones,the authors study the following fourth-order boundary value problem with two parameters u(4)+βu″-αu=f(t,u),0t1 u(0)=u(1)=u″(0)=u″(1)=0 and obtain the results on the existence of its positive solution,where f: ×[0,+∞)R is continuous,and α,β∈R satisfies β≤0,α≥-(β2)/4,α/(π4)+β/(π2)1,or β2π2,α≥0,α/(π4)+β/(π2)1.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第11期49-54,共6页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11101335) 甘肃省教育厅项目(1102) 兰州市科技项目(2011-2-72) 西北师范大学科技创新工程项目(03-69)
关键词 正解 不动点指数 positive solution cone fixed point index
  • 相关文献

参考文献11

  • 1MA Ru-yun, WANG Hai-yan. On the Existence of Positive Solutions of Fourth-Order Ordinary Differential Equations [J]. ApplAnal, 1995, 59: 225-231.
  • 2MA Ru-yun, ZHANG Ji-hui, FU Sheng-mao. The Method of Lower and Upper Solutions for Fourth-Order Two-Point Boundary Value Problem [J]. J Math Anal Appl, 1997, 215: 415-422.
  • 3BAI Zhan-bing. The Method of Lower and Upper Solutions for a Bending of an Elastic Beam Equation[J].J Math Anal Appl, 2000, 248: 195-202.
  • 4LI Yong-xiang. Positive Solutions of Fourth-Order Boundary Value Problem with Two Parameters [J]. J Math Anal Appl, 2003, 281: 477-484.
  • 5LI Yong-xiang. Two Parameters Nonresonance Condition for the Existence of Fourth-Order Boundary Value Problem [J]. J Math AnalAppl, 2005, 308: 121-138.
  • 6YAO Qing-liu. On the Positive Solutions of a Nonlinear Fourth-Order Boundary Value Problem with Two Parameters [J]. ApplAnal, 2004, 83: 97-107.
  • 7YAO Qing-liu. Existence, Multiplicity and Infinite Solvability of a Nonlinear Fourth-Order Periodic Boundary Value Problem [J]. Nonlinear Anal TMA, 2005, 63: 237-246.
  • 8BAO Zhan-bing, WANG Hai-yan. On Positive Solution of Some Nonlinear Fourth-Order Beam Equation [J]. J Math Anal Appl, 2002, 270: 357-368.
  • 9FU Yi-li, ZANG Qi, LIANG Zhan-ping. Existence and Multiplicity of Solutions of a Kind of Fourth-Order Boundary Value Problem [J]. Nonlinear Anal, 2005, 62: 803-816.
  • 10熊明.一类二阶奇异边值问题的正解[J].西南大学学报(自然科学版),2007,29(8):43-48. 被引量:9

二级参考文献8

  • 1LIUJIAQUAN,ZENGPING'AN,XIONGMING.POSITIVE SOLUTIONS FOR SINGULAR BOUNDARY VALUE PROBLEM OF SECOND ORDER[J].Chinese Annals of Mathematics,Series B,2004,25(3):383-392. 被引量:2
  • 2[2]Donal O'Regan.Solvability of Some forth (and Higher) Order Singular Boundary Value Problems[J].J Math Anal Appl,1991,161(1):78-116.
  • 3[3]Donal O'Regan.Theorey of Singular Boundary Value Problems[M].Singapore:World Scientific,1994.
  • 4[4]Ravi P Agazwal,Donal O'Regan.Nonlinear Superlinear Singular and Nonsingular Second Order Boundary Value Problems[J].J Differential Eq.,1998,143:60-95.
  • 5[6]Hardy G H,Littlewood J E,Pòlya G G.H.Inequalities[M].2nd Edition.Cambridge:Cambridge University Press,1952.
  • 6Gupta C P.Solvability of a Three-Point Nonlinear Boundary Value Problem for a Second Order Ordinary Differential Equation[J].Math Anal Appl,1992,168:540-551.?A
  • 7Gupta C P,Ntouyas S K,Tsamatos P Ch.Solvability of an M-Point Boundary Value Problem for Second Order Ordinary Differential Equations[J].Math Anal Appl,1995,189:575- 584.
  • 8Gupta C P,Trofimchuk S I.Solvability of a Multi-Point Boundary Value Problem and Related a Priori Estimates[J].Canad Appl Math Quart,1998,6(1):45-60.?A

共引文献14

同被引文献18

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部