期刊文献+

A new characterization of Willmore submanifolds 被引量:4

A new characterization of Willmore submanifolds
下载PDF
导出
摘要 Let M^n be a compact Willmore submanifold in the unit sphere Sn+p. In this note, we investigate the first eigenvalue of the SchrSdinger operator L = -△ - q on M, where q is some potential function on M, and present a gap estimate for the first eigenvalue of L. Let M^n be a compact Willmore submanifold in the unit sphere Sn+p. In this note, we investigate the first eigenvalue of the SchrSdinger operator L = -△ - q on M, where q is some potential function on M, and present a gap estimate for the first eigenvalue of L.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2011年第4期453-463,共11页 高校应用数学学报(英文版)(B辑)
基金 Supported by the National Natural Science Foundation of China(11071211) the Zhejiang Natural Science Foundation of China
关键词 Willmore submanifolds Schrodinger operator EIGENVALUE fiat normal bundle Willmore torus. Willmore submanifolds, Schrodinger operator, eigenvalue, fiat normal bundle, Willmore torus.
  • 相关文献

参考文献11

  • 1A M Li, J M Li. An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch Math, 1992, 58: 582-594.
  • 2H ZLi. Willmore surfaces in S^m, Ann Global Geom Anal, 2002, 21: 203-213.
  • 3H Z Li. Willmore submanifolds in a sphere, Math Research Lett, 2002, 9: 771-790.
  • 4S Montiel, A Ros. Minimal immersions of surfaces by the first eigenfunctions and conformal area, Invent Math, 1986, 83: 153-166.
  • 5S C Shu. Curvature and rigidity of Willmore submanifolds, Tsukuba J Math, 2007, 31: 175-196.
  • 6J Simons. Minimal varieties in Riemannian manifolds, Ann of Math, 1968, 88: 62-105.
  • 7J Weiner. On a problem of Chen, Willmore, et al, Indiana Univ Math J, 1978, 27': 19-35.
  • 8CXWu. New characterizations of the Clifford tori and the Veronese surface, Arch Math, 1993, 61: 277-284.
  • 9H W Xu. Ln/2-pinching theorems for submanifolds with parallel mean curvature in a sphere, J Math Soc Japan, 1994, 46: 503-515.
  • 10HWXu, DYYang. The gap phenomenon for extremal submanifolds in a Sphere, Differential Geom and its Applications, 2011, 29: 26-34.

同被引文献3

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部