期刊文献+

焙烧条件对Fe-Mo/ZSM-5催化剂上NO选择性催化还原性能的影响 被引量:1

Effects of calcination conditions on catalytic performance of Fe-Mo/ZSM-5 catalyst for SCR reaction of NO
下载PDF
导出
摘要 采用共浸渍法制备了m(Fe):m(Mo)=1的Fe-Mo/ZSM-5催化剂,并对其在不同焙烧条件所得样品上NO选择性催化还原反应活性进行了测试。结果表明,焙烧条件对Fe-Mo/ZSM-5催化性能影响明显,600℃焙烧6 h的样品在低温范围具有较好的催化性能,随着焙烧时间或焙烧温度的增加,其NOx转化率依次向高温方向移动,在800℃焙烧后的样品催化活性明显下降。采用XRD和BET对Fe-Mo/ZSM-5样品的体相结构和表面性能进行了研究。结果表明,不同焙烧条件下Fe-Mo/ZSM-5催化剂的晶胞参数和比表面积产生了差别,特别是焙烧温度达到800℃时,其比表面积显著减小,这可能是导致Fe-Mo/ZSM-5催化性能突然下降的主要原因。焙烧过程中残留在的表面含氮物种对Fe-Mo/ZSM-5催化剂上NO选择性催化还原反应活性影响较大。 Fe-Mo/ZSM-5 catalyst with m (Fe) : m ( Mo ) = 1 was prepared by co-impregnation method under different calcination conditions. Their catalytic performance for selective catalytic reduction (SCR) for nitrogen oxides was investigated. The results showed that the calcination conditions had evident influ- ence on the performance of Fe-Mo/ZSM-5 catalyst. The catalyst calcinated at 600 ~C for 6 h exhibited bet- ter performance for SCR of nitrogen oxides;the curve of NOx conversion was shifted to higher temperature with the increase of calcination time and calcination temperature. The catalytic activity of the catalyst cal- cined at 800 ℃ was dropped obviously. The bulk phase and surface properties of Fe-Mo/ZSM-5 catalyst were also characterized by XRD and BET techniques. The results indicated that the lattice constants and the surface area of Fe-Mo/ZSM-5 catalysts were changed under different calcination conditions. When cal-canation temperature was 800 ~C, the surface area was reduced obviously, which could be the main cause of activity reduction of the catalyst. The residual nitrous species on the catalyst surface after calcination had important influence on the activity of Fe-Mo/ZSM-5 catalyst for the selective catalytic reduction of nitrogen oxides.
出处 《工业催化》 CAS 2011年第11期64-69,共6页 Industrial Catalysis
基金 山西省科技攻关项目(20100321023)
关键词 催化剂工程 Fe-Mo/ZSM-5催化剂 焙烧温度 焙烧时间 氮氧化物 选择性催化还原 catalyst engineering Fe-Mo/ZSM-5 catalyst calcination temperature calcination time nitrogen oxide selective catalytic reduction
  • 相关文献

参考文献15

  • 1Burch R, Breen J P, Meunier F C. A review of the selective reduction of NOx with hydrocarbons under lean-burn condi- tions with non-zeolitic oxide and platinum group metal cata-lysts [ J ]. Applied Catalysis B : Environmental, 21302,39 : 283 - 303.
  • 2Patrick Gilot, Marc Guyon, Brian R. A review of NOx reduc- tion on zeolitic catalysts under diesel exhaust conditions [ J ]. Fuel, 1997,76:507 - 515.
  • 3Yvonne Traa, Beate Burger, Jens Weitkamp. Zeolite-based materials for the selective catalytic reduction of NOx with hydrocarbons [ J ]. Microporous and Mesoporous Materials, 1999,30:3 - 41.
  • 4Burch R, Sullivan J A. A transient kinetic study of the mech- anism of the NO/C3H6/O2 reaction over Pt-SiO2 catalysts [ J ]. Journal of Catalysis, 1999,182:489 - 496.
  • 5Burch R, Waiting T C. Kinetics and Mechanism of the reduc- tion of NO by C3Hs over Pt/Al2O3 under lean-bum condi- tions [ J]. Journal of Catalysis, 1997,169:45 - 54.
  • 6Huang H Y, Long R Q, Yang R T. Kinetics of selective cata- lytic reduction of NO with NH3 on Fe-ZSM-5 catalyst [ J ]. Applied Catalysis A : General ,2002,235:241 - 251.
  • 7Long R Q, Yang R T. Fe-ZSM-5 for selective catalytic reduc- tion of NO with NH3 · a comparative study of different prepa- ration techniques[ J]. Catalysis Letters,2001,74:201.
  • 8Long R Q, Yang R T. Characterization of Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia [ J ]. Journal of Catalysis,2000,194:80 - 90.
  • 9Zoltan Schay, Helmut Knoezinger, Laszlo Guczi, et al. On the mechanism of NO decomposition on Cu-ZSM-5 catalysts[J]. Applied Catalysis B :Environmental, 1998,18:263 - 271.
  • 10Xiao F S,Zhang W,Jia M,et al. Higher activity of CuCl2/ HZSM-5 prepared by dispersion method in selective cata- lytic reduction of NO by propylene (SCR-HC) at lower temperature [ J ]. Catalysis Today, 1999,50 : 117 - 123.

二级参考文献36

  • 1李哲,张海荣,黄伟,谢克昌.不同Si/Al比对Mo/ZSM-5催化性能的影响[J].分子催化,2005,19(2):104-108. 被引量:5
  • 2邢娜,王新平,于青,郭新闻.分子筛对NO和NO_2的吸附性能[J].催化学报,2007,28(3):205-209. 被引量:25
  • 3Burch R, Sullivan J A. A transient kinetic study of the mechanism of the NO/C3H6/O2 reaction over Pt-SiO2 catalysts[J]. Journal of Catalysis, 1999,182:489-496.
  • 4Burch R, Waiting T C. Kinetics and Mechanism of the Reduction of NO by C3H8 over Pt/Al2O3 under Lean-Burn Condition[J].Journal of Catalysis, 1997, 169:45--54.
  • 5Long R Q, Yang R T. Fe-ZSM-5 for selective catalytic reduction of NO with NH3 : a comparative study of different preparation techniques[J]. Catalysis Letters, 2001, 74(3-4): 201.
  • 6Kucherov A V, Montreuil C N, Kucherova T N, et al. In situ high-temperature ESR characterization of FeZSM-5 and FeSAPO-34 catalysts in flowing mixtures of NO, C3H6 and O2[J]. Catalysis Letters, 1998, 56:173--181.
  • 7Ganemi B, Bjoernbom E, Paul J. Conversion and in situ FTIR studies of direct NO decoamposition over Cu-ZSM5[J]. Applied Catulysis B, 1998, 17:293--311.
  • 8Tomoya Inoue, Keiichi Tomishige, Yasuhiro Iwasawa. Characterization of Pt-Sn/SiO2 catalysts and the role of Sn in NO-hydrocarbon reactions[J]. J Chem Soc, Faraday Trans, 1996, 92(3) : 461--467.
  • 9Xin Mei, Hwang In Chul. The effect of the preparation conditions of Pt/ZSM-5 upon its activity and selectivity for the reduction of nitric oxide[J]. Applied Catalysis (B), 1999, 21:183--190.
  • 10Long R. Q., Yang R. T.. Catalysis Letters[J], 2001,74(3/4): 201-205

共引文献19

同被引文献21

  • 1Fechete I,Wang Y, V6drine J C. The past, present and future of heterogeneous catalysis[J]. Catalysis Today, 2012,189(1) :2-27.
  • 2Sierraalta A, Anez R,Brussin M R. Theoretical study of the interaction of NO2 molecule with a metal-zeolite model(metal=Cu, Ag, Au) [J]. The Journal of Physi- cal Chemistry A,2002,106(29) :6851-6856.
  • 3Fellah M F,Onal I. C-H bond activation of methane on M-and MO-ZSM-5(M= Ag, Au, Cu, Rh and Ru) clus- ters:A density functional theory study[J]. Catalysis Today,2011,171(1) :52-59.
  • 4Kurnaz E,Fellah M F,Onal I. A density functional the- ory study of C-H bond activation of methane on a bridge site of M-O-M-ZSM-5 Clusters (M= Au, Ag, Fe and Cu)[J]. Microporous and Mesoporous Materials, 2011,138(1) :68-74.
  • 5Kondratenko E V, Kondratenko V A, Santiago M, et al. Mechanistic origin of the different activity of Rh-ZSM-5 and Fe-ZSM-5 in N20 decomposition [J]. Journal of Catalysis, 2008,256 (2) :248-258.
  • 6Zalucka J, Kozyra P, Mitoraj M, et al. Cu+ , Ag+ and Na+ cationic sites in ZSM-5 interacting with benzene: DFT modeling[J]. Polish Journal of Chemistry, 2008, 82(9) 1801-1808.
  • 7Sierraalta A, Alejos P, Ehrmann E, et al. DFT-ONIOM study of Au/ZSM-5 catalyst. Active sites, thermody- namic and vibrational frequencies[J]. Journal of Molec-ular Catalysis A:Chemical,2009,301(1) :61-66.
  • 8Jiang S, Huang S,Tu W,et al. Infrared spectra and sta- bility of CO and H20 sorption over Ag-exchanged ZSM-5 zeolite: DFT study[J]. Applied Surface Science, 2009,255(11) :5764-5769.
  • 9Izquierdo R,Rodriguez L J,Afiez R,et al. Direct eata- lytie decomposition of NO with Cu-ZSM-5: A DFT- ONIOM study. Journal of Molecular Catalysis A: Chemical, 2011,348(1) :55-62.
  • 10Guesmi H, Berthomieu D, Kiwi-Minsker L. N20 de- composition over (ta-oxo) (p-hydroxo) di-iron complex supported by ZSM-5 zeolite: effect of cluster size on DFT energy profile. Studies in Surface Science and Catalysis, 2008,174 : 1123-1126.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部