期刊文献+

Global existence and blow-up of solutions to reaction-diffusion system with a weighted nonlocal source

Global existence and blow-up of solutions to reaction-diffusion system with a weighted nonlocal source
下载PDF
导出
摘要 In this paper,we study a semi-linear reaction-diffusion system with a weighted nonlocal source,subject to the null Dirichlet boundary condition.Under certain conditions,we prove that the classical solution exists globally and blows up in finite time respectively,and then obtain the uniform blow-up rate in the interior. In this paper,we study a semi-linear reaction-diffusion system with a weighted nonlocal source,subject to the null Dirichlet boundary condition.Under certain conditions,we prove that the classical solution exists globally and blows up in finite time respectively,and then obtain the uniform blow-up rate in the interior.
出处 《Journal of Shanghai University(English Edition)》 CAS 2011年第6期501-505,共5页 上海大学学报(英文版)
基金 Project supported by the Research Program of Natural Science of Universities in Jiangsu Province (Grant No.09KJD110008) the Natural Science Foundation of Nanjing Xiaozhuang University (Grant No.005NXY11)
关键词 reaction-diffusion system nonlocal source uniform blow-up profile weight function simultaneous blow-up reaction-diffusion system nonlocal source uniform blow-up profile weight function simultaneous blow-up
  • 相关文献

参考文献3

二级参考文献23

  • 1LinZhigui LiuYurong.UNIFORM BLOWUP PROFILES FOR DIFFUSION EQUATIONS WITH NONLOCAL SOURCE AND NONLOCAL BOUNDARY1[J].Acta Mathematica Scientia,2004,24(3):443-450. 被引量:26
  • 2ACOSTA G,ROSSI J D.Blow-up vs global existence for quasilinear prabolic systems with a nonlinear bound-ary condition[J].Journal of Applied Mathematics and Physics,1997,48(5):711-724.
  • 3DING J,LI S.Blow-up solutions and global solutions for a class of quasilinear parabolic equations with Robin boundary conditions[J].Computers and Mathematics with Applications,2005,49(5):689-701.
  • 4FRIEDMAN A,MCLEOD J B.Blow-up of positive solu-tions of semi-linear heat equations[J].Indiana Univer-sity Mathematics Journal,1985,34(2):425-447.
  • 5FUJITA H.On the blowing up of solutions of the Cauchy problem for ut =△u+u1+α[J].Journal of the Faculty of Science,1966,16(1):105-113.
  • 6PINSKY R.Existence and noexistence of global solu-tions for ut = △u + a(x)up in Rd[J].Journal of Differ-ential Equations,1997,133(1):152-177.
  • 7Yu Wei,WANG Yuan-di.Properties of parabolic partial differential equation of the first kind boundary condi-tion problems[J].Journal of Shanghai University (Nat-ural Science Edition),2005,11(4):391-401 (in Chinese).
  • 8ZHANG H,LIU Z,ZHANG W.Growth estimates and blow-up in quasilinear parabolic problems[J].Applica-ble Analysis,2007,86(2):261-268.
  • 9Hu B,YIN H M.The profile near blowup time for so-lution of the heat equation with a nonlinear boundary condition[J].Transactions of the American Mathemat-ical Society,1994,346(1):117-135.
  • 10LEVINE H,PAYNE L.Nonexistce theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time[J].Journal of Differential Equations,1974,16(2):319-334.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部