摘要
研究了二阶奇型J-对称微分算子辛几何刻画问题,通过构造商空间,应用辛几何的方法讨论了二阶J-对称微分算子的自共轭扩张问题。给出了与二阶微分算子自共轭域相对应的完全J-Lagrangian子流型的分类与描述。
The symplectic geometry characterization of second order singular J- symmetric differential operators was investigated. By constructing different quotient spaces, self--adjoint extensions of second order J-- symmetric differential operators were studied using the method of symplectic geometry. Then classification and description of complete J- Lagrangian submanifold corresponding with self--adjoint domains of second order differential operators were obtained.
出处
《辽宁石油化工大学学报》
CAS
2011年第4期80-83,87,共5页
Journal of Liaoning Petrochemical University
基金
辽宁省教育厅高校科研项目(2004F100)
辽宁石油化工大学重点学科建设资助项目(K200409)