期刊文献+

公路隧道群追尾交通事故预警模型 被引量:5

An Early-warning Model for Rear-end Accident Occurring in Highway Tunnel Group
下载PDF
导出
摘要 由于公路隧道群追尾交通事故与车辆行驶过程中的运行状态密切相关,将车辆制动距离、行驶速度、车辆类型等交通流参数作为其识别预警特征参量,结合人工免疫系统原理,构建了智能化的公路隧道群追尾交通事故预警模型,能够对车辆异常状态的发展趋势做出较为准确的判断,并给出相应事故安全级别的预警信息.最后,以西汉高速公路隧道群区段为例,运用该基于人工免疫机理的预警模型进行工程实例仿真分析,得出了不同工况下的预警事故信息,说明了预警模型的准确性和可行性,为我国高速公路隧道群区段的安全运营管理提供了重要的理论依据. Considering the close relationship between rear-end accident and the vehicle's travelling state in highway tunnel group,this paper takes braking distance,travelling speed and the type of vehicle as characteristic parameters for forewarning the rear-end accidents occurring in highway tunnel group.Then,on the basis of artificial immune mechanism,an early-warning model is proposed to identify and determine the tendency caused by vehicle's abnormal state,and some important early-warning information is given as the levels of accidents.Finally,Xihan highway tunnel group is studied as a simulation example to verify the accuracy and utility of the early-warning model.It is expected that the findings from the study can provide a significant theoretical basis for the safety operation management in highway tunnel group.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第11期1634-1640,共7页 Journal of Tongji University:Natural Science
基金 西部交通建设科技项目(2008-318-740-014) 国家科技支撑计划项目(2009BAG13A02)
关键词 公路隧道群 追尾交通事故预警 人工免疫 改进否定算法 highway tunnel group early-warning of rear-end accident artificial immune improved negative algorithm
  • 相关文献

参考文献7

  • 1Koppelman F S,Lin W. Development of an expressway incident detection algorithm for the advance area based on the California algorithm set[R]. Evanston: the Transportation Center, 1997. 256 - 260.
  • 2Martin P T, Perrin J, Hansen B. Incident detection algorithm evaluation[M]. [S. l]: University of Utah,2001.
  • 3ZHOU Sam Dingshan. An integrated traffic incident detection medel[M]. Austin: University of Texas, 2000.
  • 4Srinivasan D, Cheu R L, Poh Y P, et al. Development of an intelligent technique for traffic network incident detection[J]. Engineering Application of Artificial Intelligence, 2000 (13) :311.
  • 5Farmer J D,Packard N H, Perelson A S. The immune system, adaptation, and machine learning[J]. Physica, 1986(22D): 187.
  • 6Esponda F, Forrest S, Helman P. A formal framework for positive and negative detection schemes[J]. IEEE Transaction on Systems, Man and Cybernetics-Part B.. Cybernetics, 2004,34 (1) :357.
  • 7肖毅,胡伟雄,肖明,赵慧.基于免疫的入侵检测系统研究[J].计算机工程,2006,32(20):188-190. 被引量:3

二级参考文献4

  • 1DUHaifeng,GONGMaoguo,JIAOLicheng,LIURuochen.A novel algorithm of artificial immune system for high-dimensional function numerical optimization[J].Progress in Natural Science:Materials International,2005,15(5):463-471. 被引量:18
  • 2Forrest S,Perelson A,Allen L.Self-nonself Discrimination in a Computer[C].Proceedings of the IEEE Symposium on Research in Security and Privacy.Los Alamitos,CA:IEEE Computer Society Press,1994:202-212.
  • 3Forrest S,Hofmeyr S A,Somayaji A.Computer Immunology[J].Communications of the ACM,1997,40(10):88-96.
  • 4Dipankar D.Immunity-based Intrusion Detection Systems:A General Framework[C].Proceedings of the the 22th National Information Systems Security Conference,1999-10:18-21.

共引文献2

同被引文献25

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部