期刊文献+

(3+1)维Boussinesq方程的对称、约化及精确解 被引量:1

Symmetries,reductions and exact solutions of (3+1)-dimensional Boussinesq equation
下载PDF
导出
摘要 利用直接约化方法得到了(3+1)维Boussinesq方程的对称,约化了方程,并求出其精确解.所得结果推广了已有文献中关于此方程的有关结果. Symmetries,reductions and exact solutions of(3+1)-dimensional Boussinesq equation are obtained by using direct symmetries method in this paper.For exact solutions of the equation,we generalize the corresponding results of the other papers.
出处 《纯粹数学与应用数学》 CSCD 2011年第6期781-786,共6页 Pure and Applied Mathematics
基金 国家自然科学基金 中国工程物理研究院联合基金(11076015)
关键词 对称 约化 (3+1)维Boussinesq方程 精确解 symmetries reductions (3+1)-dimensional Boussinesq exact solutions
  • 相关文献

参考文献9

二级参考文献49

共引文献43

同被引文献10

  • 1Boussinesq J. Theorie des Ondes et des Remous Qui se Propagent le Long D.un Canal Rectangulaire Horizontal enCommuniquant au Liquide Contenu Dans ce Canal des Vitesses Sensiblement Pareilles de la Surface au Fond [J].J Math Pures Appl, 1872, 17(2): 55-108.
  • 2Bogolubsky I L. Some Examples of Inelastic Soliton Interaction [J]. Comput Phys Comm, 1977,13(3) : 149-155.
  • 3Olver P J. Applications of Lie Groups to Differential Equations [M]. New York: Springer-Verlag,1993.
  • 4Barannik L F, Lahno H O. Symmetry Reduction of the Boussinesq Equation to Ordinary Differential Equations[J]. Rep Math Phys,1996 , 38(1) : 1-9.
  • 5Clarkson P A. Nonclassical Symmetry Reductions of the Boussinesq Equation [J]. Chaos Solitons Fractals, 1995,5(12): 2261-2301.
  • 6Levi D,Winternitz P. Non-classical Symmetry Reduction; Example of the Boussinesq Equation [J], J Phys A:Math Gen, 1989, 22(15): 2915-2924.
  • 7Clarkson P A,Ludlow D K. Symmetry Reductions,Exact Solutions. and Painleve Analysis for a GeneralisedBoussinesq Equation [J]. J Math Anal Appl,1994,186(1) : 132-155.
  • 8Gandarias M L,Bruzon M S. Classical and Nonclassical Symmetries of a Generalized Boussinesq Equation [J].J Nonlinear Math Phys, 1998,5(1) : 8-12.
  • 9Bruzon M S,Gandarias M L. Symmetries for a Family of Boussinesq Equations with Nonlinear Dispersion [J].Commun Nonlinear Sci Numer Simul, 2009 , 14(8) : 3250-3257.
  • 10Moleleki L D, Khalique C M. Symmetries, Traveling Wave Solutions, and Conservation Laws of a (3 + 1)-Dimensional Boussinesq Equation [J]. Adv Math Phys, 2014, 2014 : 672-679.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部