期刊文献+

认知无线网络中基于随机博弈框架的频率分配 被引量:4

Distributed frequency allocation based on stochastic game in cognitive radio networks
下载PDF
导出
摘要 为了解决认知无线网络中分布式的动态频率分配问题,采用随机博弈的框架,将认知链路建模成自私理性的智能体,并提出了一种以最大化平均Q函数为目标的多智能体学习算法—MAQ。通过MAQ学习,分布式的智能体可以实现间接的协商而不需要交互Q函数和回报值,因为智能体的决策过程需要考虑其他用户的决策。理论证明了MAQ学习算法的收敛性。仿真结果表明,MAQ算法的吞吐量性能接近中心式的学习算法,但是MAQ只需要较少的信息交互。 In order to achieve a distributed dynamic frequency allocation in cognitive radio network,a stochastic game framework is adopted.Cognitive links are modeled as selfish and rational agents.A new MARL algorithm,maximizing the average Q function algorithm(MAQ),is proposed in this study.With MAQ,distributed agents can realize an indirect coordination without exchanging their rewards and Q functions.Simulation results show that the learning efficiency of MAQ is close to that of centric learning method,while MAQ needs much less intercommunications.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2011年第5期778-783,共6页 Journal of Liaoning Technical University (Natural Science)
基金 国家973基金资助项目(2009CB320400)
关键词 随机博弈 MARL 认知无线电 资源分配 强化学习 Q学习 分布式网络 MARKOV过程 stochastic game MARL cognitive radio resource allocation reinforcement learning Q learning distributed networks Markov process
  • 相关文献

参考文献15

  • 1Federal Communications Commission. Spectrum policy task force report[R]. 02-155,NewYork: FCC,Nov. 2002.
  • 2Mitola J III, Cognitive radio for flexible mobile multimedia communications[C]// IEEE Communications Society. International Workshop on Mobile Multimedia Communications. San Diego: IEEE, 1999: 3-10.
  • 3Shi Y, Wang J H, Khaled B L, et al. A game-theoretic approach for distributed power control in interference relay channels[J]. IEEE Transactions on wireless communications, 2009, 8(6): 3151-3161.
  • 4Song Y, Zhang C, Joint channel and power allocation in wireless mesh networks: a game theoretical perspective[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(7):1149-1159.
  • 5Wang J L, Liu X, Wu Q H, et al. A mixed game theoretic framework of distributed frequency allocation and power control in cognitive radio networks[J]. Frequenz, 2010,64(5),104-111.
  • 6Nie, Comaniciu C. Adaptive channel allocation spectrum etiquette for cognitive radio networks[C]//IEEE Communications Society. DySPAN'05. Baltimore,USA: IEEE,2005:269-278.
  • 7Niyaoto D, Hossain E. Competitive spectrum sharing in cognitive radio networks: a dynamic game approach[J]. IEEE Transactions on Wireless Commnuications, 2008,7(7):2651-2660.
  • 8Busoniu L, Babuska R, Schutter B D. A comprehensive survey of multiagent reinforcement learing[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Application and Reviews, 2008,38(2): 156-172.
  • 9Littman M L. Value-function reinforcement learning in Markov games[J]. J.Cogn. Syst. Res., 2001,2(1):55-66.
  • 10Hu J, Wellman M E Multiagent reinforcement learning: theoretical frame work and an algorithm[C]//Jong E D, Oates T. 15th Int. Conf. Mach learn (ICML-94).Madison: WI, 1994:242-250.

同被引文献27

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部