期刊文献+

云计算中虚拟资源调度的决策系统 被引量:20

Decision System of Virtual Resources Scheduling in Cloud Computing Environment
下载PDF
导出
摘要 云环境中如何为任务分配虚拟资源并将其调度到物理资源上是一个研究难点;在详细分析云环境中任务分发流程的基础上,构建了虚拟资源的调度控制模型,并提出采用分布估计算法(Estimation of distribution algorithms,EDAs)进行求解;该模型首先通过感知器感知物理资源,然后将物理资源和虚拟资源抽象为具有一定属性的节点,资源的分配过程转化为将虚拟资源映射到物理资源;同时提出了资源满足率的概念并以此为目标函数来进行优化,对比Max-min算法,静态调度算法和随机调度算法,在任务集为5~55的区间及负载量为0.5~1.5的区间,得出EDA算法的资源满足率平均至少提高了1.004倍,最高达1.793倍。 It's a research difficulty how to allocate virtual resources to physical resources for tasks and schedule virtual resources to physical resources in cloud environment. This paper constructed a virtual resources scheduling model and proposed using Estimation of Distribution Algorithms (EDAs) to resolve it based on the detail analyzing the flow of task assignment. The physical resources were perceived through perceptron firstly in this model, and then the physical resources and virtual resources were abstracted to some nodes with attributes, the process of resources assignment was changed to mapping virtual resource to physical resource. At the same time, the concept of rate of resource service was proposed as the optimum function. When the tasks number is between 5 and 55 and the load rate is between 0. 5 and 1.5, comparing with Max--min algorithm, static algorithm and random algorithm, the rate of resource service of EDA algorithm is improved on average by at least 1. 004 and at most 1. 793 times.
作者 方锦明
出处 《计算机测量与控制》 CSCD 北大核心 2011年第12期3145-3148,共4页 Computer Measurement &Control
基金 浙江省高职高专院校特色专业建设项目(TZZ09085)
关键词 云计算 资源调度 分布估计算法 Cloud computing resources scheduling Estimation of distribution algorithms
  • 相关文献

参考文献8

  • 1Vaquero L, Rodero--Merino L, Caeeres J, et al. A break in the clouds: towards a cloud definition [J]. ACM SIGCOMM Computer Communication Review, 2008, 39 (1): 50- 55.
  • 2Sotomayor B, Montero R S, Llorente I M, et al. Virtual Infrastructure Management in Private and Hybrid Clouds[J].Ieee In ternetComputing, 2009, 13 (5)7 14 -22.
  • 3Sempolinski P, Thain D. A Comparison and Critique of Eucalyptus, OpenNebula and Nimbus [C]. Proceedings of the Cloud Com puting Technology and Science (CloudCom), 2010 IEEE Second International Conference on Indianapolis, IN Ieee, 2010. 417 -426.
  • 4Iyer R, Illikkal R, Tickoo O, el al. VM3: Measuring, modeling and managing VM shared resources [J]. Computer Networks, 2009, 53 (17): 2873-2887.
  • 5Kong X Z, Lin C, Jiang Y X, eta|. Efficient dynamic task scheduling in virtualized data centers with fuzzy prediction [J]. Journal of Network and Computer Applications, 2011, 34 (4):1068 -1077.
  • 6Song Y, Wang H, Li Y, et al. Multi--Tiered On--Demand Resource Scheduling for VM--Based Data Center [C]. Proceedings of the Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid. IEEE Computer Society, 2009. 148-155.
  • 7周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:210
  • 8王勇,蔡自兴,周育人,肖赤心.约束优化进化算法[J].软件学报,2009,20(1):11-29. 被引量:116

二级参考文献94

  • 1周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:210
  • 2Shapiro J L. Drift and scaling in estimation of distribution algorithms. Evolutionary Computation, 2005, 13(1):99-123
  • 3Zhang Q, Miihlenbein H. On the convergence of a class of estimation of distribution algorithms. IEEE Transactions on Evolutionary Computation, 2004, 8(2): 127-136
  • 4Zhang Q. On the convergence of a factorized distribution algorithm with truncation selection[Online], available: http://cswww.essex.ac.uk/staff/zhang/EDAWEB/,May 10, 2006
  • 5Zhang Q. On stability of fixed points of limit models of univariate marginal distribution algorithm and factorized distribution algorithm. IEEE Transactions on Evolutionary Computation, 2004, 8(1): 80-93
  • 6Rastegax R, Meybodi M Ft. A study on the global convergence time complexity of estimation of distribution algorithms. Lecture Notes in Computer Science, 2005, 3641:441-450
  • 7Gao Y, Culberson J. Space complexity of estimation of distribution algorithms. Evolutionary Computation, 2005,13(1): 125-143
  • 8Pelikan M, Sastry K, Goldberg D E. Scalability of the Bayesian optimization algorithm. International Journal of Approximate Reasoning, 2002, 31(3): 221-258
  • 9Muhlenbein H, HSns R. The estimation of distributions and the minimum relative entropy principle. Evolutionary Computation, 2005, 13(1): 1-27
  • 10Roberto S. Estimation of distribution algorithms with Kikuchi approximations. Evolutionary Computation, 2005,13(1): 67-97

共引文献324

同被引文献131

引证文献20

二级引证文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部