期刊文献+

基于压缩感知的低速率语音编码新方案 被引量:2

New low bit rate speech coding scheme based on compressed sensing
下载PDF
导出
摘要 利用语音小波高频系数的稀疏性和压缩感知原理,提出一种新的基于压缩感知的低速率语音编码方案,其中小波高频系数的压缩感知重构分别采用l1范数优化方案及码本预测方案进行,前者对大幅度样值重构效果较好,且不仅适用于语音,也适用于音乐信号,具有传统的线性预测编码方法无法比拟的优势,后者对稀疏系数位置的估计较好,且不需要采用压缩感知重构常用的基追踪算法或匹配追踪算法,从而减少了计算量。两种方法的联合使用能发挥各自的优势,使得重构语音的音质进一步改善。 Utilizing the sparsity of high frequency wavelet transform coefficients of speech signal and theory of compressed sensing, a new low bit rate speech coding scheme based on compressed sensing is proposed. The reconstruction of high frequency wavelet transform coefficients is achieved by li normal optimization and codebook prediction reconstruction respectively, l1 reconstruction has good effect for large coefficients and suits for both speech and music, with which traditional linear prediction coding cannot compare. Codebook prediction reconstruction has good effect for the location of sparse coefficients and reduces the amount of calculation due to not using basis pursuit or matching pursuit. The combination of these two reconstruction methods can bring the advantages of both methods and improve the quality of the reconstructed speech.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第12期2688-2692,共5页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60971129) 江苏省普通高校研究生科研创新计划(CX10B_189Z CX10B_191Z) 南京邮电大学青蓝计划(NY210031)资助项目
关键词 小波变换 压缩感知 矢量量化 线性规划 wavelet transform compressed sensing vector quantization linear programming
  • 相关文献

参考文献15

  • 1李淑红,桑恩方.基于小波变换和矢量量化的语音压缩编码方案[J].声学学报,2000,25(1):50-55. 被引量:8
  • 2DONOHO D. Compressed sensing[ J]. IEEE Trans. on Information Theory, 2006,52(4) :1289-1306.
  • 3XU T, WANG W W. A compressed sensing approach for underdetermined blind audio source separation with sparse representation [ C ]. IEEESP 15th Workshop on Satistical Signal Processing, 2009: 493-496.
  • 4WILLETT R M, RAGINSKY M. Performance bounds on compressed sensing with Poisson noise[ C]. IEEE Inter- national Symposium on Information Theory, Seoul, 2009: 174-178.
  • 5YANG D P, LI H SH, PETERSON G D, et al. UWB signal acquisition in positioning systems: Bayesian com- pressed sensing with redundancy[ C]. 43rd Annual Con- ference on Information Sciences and Systems, Baltimore, 2009 : 192-197.
  • 6刘冰,付平,孟升卫.基于采样值数字特征的压缩感知信号检测方法[J].仪器仪表学报,2011,32(3):577-582. 被引量:14
  • 7石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:712
  • 8ANDRECUT M, ESTER A, KAUFFMAN S A. Compet- itive optimization of compressed sensing [ J ], Journal of Physics A : Mathematical and Theoretical, 2007 (40) : 299 -305.
  • 9DONOHO D L. For most large underdetermined systems of linear equations, the minimal L'-norm solution is also the sparsest solution [ R ]. Stanford University, 2004- 9-16.
  • 10李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377. 被引量:205

二级参考文献192

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2冯登超,杨兆选.基于小波包最优基的图像压缩算法研究[J].电子测量与仪器学报,2007,21(3):20-22. 被引量:2
  • 3崔锦泰 程正兴(译).小波分析导论[M].西安交通大学出版社,1994..
  • 4R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 5Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 6Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 7E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 8E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 9Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 10G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.

共引文献922

同被引文献26

  • 1DONOHO D L. Compressed sensing [ J]. IEEE Transac- tions on Information Theory, 2006, 52(4) : 1289-1306.
  • 2BARANIUK R G. Compressive sensing [ J]. IEEE Sig- nal Processing Magazine, 2007, 24(4) : 115-121.
  • 3DONOHO D L, TSAIG Y. Extensions of compressed sensing [ J ]. Signal Processing, 2006, 86 (3) : 533 -548.
  • 4FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems [ J ]. Journal of Selected Topics in Signal Processing, 2007, 1 (4) :586-598.
  • 5BECK A, TEBOULLE M. A fast iterative shrinkage- thresholding algorithm for linear inverse problems [ J ]. SIAM Journal on Imaging Sciences, 2009, 2 ( 1 ) : 183-202.
  • 6NEEDELL D, TROPP J A. CoSaMP. Iterative signal re- covery from incomplete and inaccurate samples [ J ]. Ap- plied and Computation Harmonic Analysis, 2009, 26: 301-321.
  • 7WRIGHT S, NOWAK R, FIGUEIREDO M. Sparse re- construction by separable approximation [ J ]. IEEE Transactions Signal Processing, 2009,57:2479-2493.
  • 8GEMMEKE J F, CRANEN B. Using sparse representa- tions for missing data imputation in noise robust speech recognition [ C ]. European Signal Processing Conf, Lau- sanne, Switzerland,2008.
  • 9NOCEDAL J, WRIGHT S J. Numerical optimization,2nd ed[ M ]. New York: Springer-Verlag, 2006.
  • 10郭金库,刘光斌,余志勇,等.信号稀疏表示理论及其应用[M].北京:科学出版社,2013:22-30.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部