期刊文献+

Negative refractive index in a four-level atomic system

Negative refractive index in a four-level atomic system
原文传递
导出
摘要 A closed four-level system in atomic vapour is proposed, which is made to possess left handedness by using the technique of quantum coherence. The density matrix method is utilized in view of the rotating-wave approximation and the effect of a local field in dense gas. The numerical simulation result shows that the negative permittivity and the negative permeability of the medium can be achieved simultaneously (i.e. the left handedness) in a wider frequency band under appropriate parameter conditions. Furthermore, when analysing the dispersion property of the left-handed material, we can find that the probe beam propagation can be controlled from superluminal to subluminal, or vice versa via changing the detuning of the probe field. A closed four-level system in atomic vapour is proposed, which is made to possess left handedness by using the technique of quantum coherence. The density matrix method is utilized in view of the rotating-wave approximation and the effect of a local field in dense gas. The numerical simulation result shows that the negative permittivity and the negative permeability of the medium can be achieved simultaneously (i.e. the left handedness) in a wider frequency band under appropriate parameter conditions. Furthermore, when analysing the dispersion property of the left-handed material, we can find that the probe beam propagation can be controlled from superluminal to subluminal, or vice versa via changing the detuning of the probe field.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期244-248,共5页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 60768001 and 10464002)
关键词 quantum interference electromagnetically induction left-handed materials negative refractive index quantum interference, electromagnetically induction, left-handed materials, negative refractive index
  • 相关文献

参考文献37

  • 1Veselago V G 1968 Soy. Phys, Usp. 10 509.
  • 2Zharov A A and Shadrivov V I 2005 Appl. Phys. 9T 113906.
  • 3Smith D R, Padilla W J and Vier D C 2000 Phys. Rev. Lett. 84 4184.
  • 4Shelby R A, Smith D R and Schultz S 2001 Science 77 292.
  • 5Lakhtakia A 2004 Int. J. Electron. Commun. 58 229.
  • 6Zhang Z M and Fu C J 2002 Appl. Phys. Lett. 80 1097.
  • 7Pendry J B 2001 Phys. Rev. Lett. 85 3966.
  • 8Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Shultz S 2000 Phys. Rev. Lett. 84 4184.
  • 9Shelby R A, Smith D R, Nemat-Nasser S C and Schultz S 2001 Appl. Phys. Lett. 78 489.
  • 10Yen T Y, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 Science 306 1494.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部