摘要
讨论了复方阵特征值的分布及其最小奇异值的下界问题.给出了复方阵特征值的一个新包含区域和复方阵最小奇异值的一个新下界,这个新下界改进了文献[1]中的定理4所给的下界.文中数值算例表明所得结果是有效的.
The estimations of eigenvalues and the smallest singular values of complex matrices are researched. A new closed disk is obtained which contains all eigenvalues of a given complex matrix and a new lower bound of the smallest singular value of a given complex matrix is given. The lower bound improves the lower bound of Theorem 4 in [ 1 ]. Finally, Numerical examples are used to illustrate the effectiveness of the results.
出处
《昆明学院学报》
2011年第6期1-5,共5页
Journal of Kunming University
基金
国家自然科学基金资助项目(10961027)
关键词
复方阵
特征值
奇异值
估计
complex matrix
eigenvalue
singular value
estimation