期刊文献+

复矩阵特征值及其最小奇异值的估计 被引量:1

Estimation for the Eigenvalues and the Smallest Singular Value of Complex Matrices
下载PDF
导出
摘要 讨论了复方阵特征值的分布及其最小奇异值的下界问题.给出了复方阵特征值的一个新包含区域和复方阵最小奇异值的一个新下界,这个新下界改进了文献[1]中的定理4所给的下界.文中数值算例表明所得结果是有效的. The estimations of eigenvalues and the smallest singular values of complex matrices are researched. A new closed disk is obtained which contains all eigenvalues of a given complex matrix and a new lower bound of the smallest singular value of a given complex matrix is given. The lower bound improves the lower bound of Theorem 4 in [ 1 ]. Finally, Numerical examples are used to illustrate the effectiveness of the results.
出处 《昆明学院学报》 2011年第6期1-5,共5页 Journal of Kunming University
基金 国家自然科学基金资助项目(10961027)
关键词 复方阵 特征值 奇异值 估计 complex matrix eigenvalue singular value estimation
  • 相关文献

参考文献6

  • 1ZOU Li-min, JIANG You-yi. Estimation of the eigenvalues and the smallest singular value of matrices [ J ]. Linear Algebra and its Applications,2010, 433(6) :1203 - 1211.
  • 2HORN R A, JOHNSON C R. Matrix Analysis [ M ]. Cambridge : Cambridge University Press, 1985.
  • 3HORN R A,JOHNSON C R. Topics in Matrix Analysis[ M]. Cambridge:Cambridge University Press,1991.
  • 4HUANG Ting-zhu. Improving bounds for eigenvalues of complex matrices using traces [ J ]. Linear Algebra Appl,2007 ,426 :841 -845.
  • 5屠伯埙.正定Hermite阵的行列式上界与Hadamard不等式的改进.复旦大学学报:自然科学版,1986,:429-435.
  • 6胡兴凯,邹黎敏.矩阵特征值和奇异值的估计[J].西南师范大学学报(自然科学版),2009,34(3):40-43. 被引量:8

二级参考文献6

共引文献7

同被引文献3

  • 1CVETKOVIC L. H - matrix theory vs eigenvalue localization [ J]. Numerical Algorithms, 2006,42 ( 3 ) :229 -245.
  • 2L1Chao-qian,LI Yao-tang. Generalizations of Brauer's eigenvalue localization theoremf J]. Electronic Journal of Linear Algebra,2011,22:1168 -1178.
  • 3CVETKOVIC L,KOSTIC V,BRU R,et al. A simple generalization of Gersgorin's theorem[ J]. Advances in Computational Mathematics,2011,35:271 -280.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部