期刊文献+

基于CST参数化的翼型优化遗传算法研究 被引量:5

Research on Genetic Algorithm for Aerodynamic Shape Optimization Based on CST
下载PDF
导出
摘要 用外形建模的CST参数化方法,构建翼型几何可直接利用其后缘角、前缘半径等几何特征,其控制参数更能反映翼型特有的气动敏感性,有助于遗传算法搜索寻优。基于这一参数化方法,结合遗传算法,构造了用于翼型优化的设计方法。算法中,CST控制参数作为设计变量,采用二进制编码,并通过引入精英策略,提高了遗传算法的收敛性能。算法适应度评估涉及的流场求解则采用了基于Jameson有限体积法的Euler方程解算程序。先以NACA0012翼型为例,以其某一已知的表面压力分布为目标,进行了遗传算法的重构运算,给出了重构的翼型几何外形,验证了方法。在此基础上,进行了带约束的跨音速翼型优化设计,给出了升力系数极大化和阻力系数极小化等设计算例,展示出翼型优化设计的效果。 The CST parameterization method is applied to the aerodynamic shape optimization of airfoils.A binary coded Genetic Algorithm(GA) is used as the fundamental optimization method.Elitist strategy is introduced into GA to improve its performance of convergence.A finite volume Euler solver based on Jameson method is used for aerodynamic calculation.The presented results of airfoil reconstruction show that the developed method is feasible.The method is then applied to the problems including lift coefficient maximization and drag coefficient minimization under prescribed constraints,to validate its performance when used in aerodynamic shape optimization of airfoils.
作者 张磊 陈红全
出处 《航空计算技术》 2011年第6期53-57,共5页 Aeronautical Computing Technique
关键词 CST 遗传算法 精英策略 有限体积法 翼型气动优化 CST genetic algorithm elitist strategy finite volume method aerodynamic shape optimization
  • 相关文献

参考文献6

  • 1Brenda M Kulfan,John E Bussoletti. Fundamental Parametric Geometry Representations for Aircraft Component Shapes [ A ]. AIAA 2006 - 6948.
  • 2孙明华,崔海涛,温卫东.基于精英保留遗传算法的连续结构多约束拓扑优化[J].航空动力学报,2006,21(4):732-737. 被引量:13
  • 3Blazek J. Computational Fluid Dynamics:Principles and Applications [ M ]. Oxford: Elsevier Science ,2001 : 1 - 215.
  • 4Frederic J Blom. Considerations on the Spring Analogy [ J ]. International Journal for Numerical Methods in Fluids,2000, 32:647 - 668.
  • 5Marco C, Macelo H, Ernani V. A Study of the CST Parameterization Characteristics[ A]. AIAA 2009 -5767.
  • 6周春华,伍贻兆.非结构网格上Euler方程有限体积解法的改进[J].南京航空航天大学学报,2003,35(3):313-317. 被引量:3

二级参考文献14

  • 1王中华,温卫东.基于模拟退火遗传算法的平面连续体结构的拓扑优化[J].航空动力学报,2004,19(4):495-498. 被引量:3
  • 2隋允康,彭细荣.结构拓扑优化ICM方法的改善[J].力学学报,2005,37(2):190-198. 被引量:79
  • 3Swanson R C, Turkel E. Multistage scheme with multigrid for Euler and Navler-Stokes equations[R]. NASA Technical Paper 3631,1997.
  • 4Mavriplis D J. Multigrid solution of the 2-D Euler equations on unstructured triangular meshes [J].AIAA J,1988,26:824-831.
  • 5Rivara M C. Mesh refinement processes based on the generalized bisection of simplicities [J]. SIAM Journal of Numerical Analysis, 1984,21 : 604-613.
  • 6Kroll N, Jain R K. Solution of two-dimensional Euler equations-experience with a finite volume code[R]. DFVLR-FB 87-14,1987.
  • 7Lock R C. Test cases for numerical methods in two dimensional transonic flows [R]. AGARD Reports No. 575,1970.
  • 8Stolcis L, Johnston L J. Solution of the Euler equations on unstructured grids for two-dimensional compressible flow [J]. Aeronautical Journal, 1990,June/July : 181 - 195.
  • 9Kawamura H,Ohmori H,Kito N.Truss topology optimization by a modified genetic algorithm[J].Structural and Multidisciplinary Optimization,2002,23(6):467-472.
  • 10Chapman C D,Saitou K,Jakiela M J.Genetic algorithms as an approach to configuration and topo-logy design[J].Journal of Mechanical Design,Transactions of the ASME,1994,116(4):1005-1012.

共引文献14

同被引文献28

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部