期刊文献+

A new method of inhibiting pollutant release from source water reservoir sediment by adding chemical stabilization agents combined with water-lifting aerator 被引量:5

A new method of inhibiting pollutant release from source water reservoir sediment by adding chemical stabilization agents combined with water-lifting aerator
原文传递
导出
摘要 Source water reservoirs easily become thermally and dynamically stratified. Internal pollution released from reservoir sediments is the main cause of water quality problems. To mitigate the internal pollution more effectively, a new method, which combined chemical stabilization with water lifting aerator (WLA) technology, was proposed and its effciency in inhibiting pollutant release was studied by controlled sediment-water interface experiments. The results showed that this new method can inhibit pollutant release from sediment effectively. The values of mean effciency (E) in different reactors 2#–5# (1# with no agent, 2# 10 mg/L polymeric aluminum chloride (PAC) was added, 3# 20 mg/L PAC was added, 4# 30 mg/L PAC was added, 5# 20 mg/L PAC and 0.2 mg/L palyacrylamide (PAM) were added) for PO43- were 35.0%, 43.9%, 50.4% and 63.6%, respectively. This showed that the higher the PAC concentration was, the better the inhibiting effciency was, and PAM addition strengthened the inhibiting effciency significantly. For Fe2+, the corresponding values of E for the reactors 2#–5# were 22.9%, 47.2%, 34.3% and 46.2%, respectively. The inhibiting effect of PAC and PAM on Mn release remained positive for a relatively short time, about 10 days, and was not so effective as for PO43- and Fe2+. The average effciencies in inhibiting the release of UV254 were 35.3%, 25.9%, 35.5%, 38.9% and 39.5% for reactors 2#–5#, respectively. The inhibiting mechanisms of the agents for different pollutants varied among the conditions and should be studied further. Source water reservoirs easily become thermally and dynamically stratified. Internal pollution released from reservoir sediments is the main cause of water quality problems. To mitigate the internal pollution more effectively, a new method, which combined chemical stabilization with water lifting aerator (WLA) technology, was proposed and its effciency in inhibiting pollutant release was studied by controlled sediment-water interface experiments. The results showed that this new method can inhibit pollutant release from sediment effectively. The values of mean effciency (E) in different reactors 2#–5# (1# with no agent, 2# 10 mg/L polymeric aluminum chloride (PAC) was added, 3# 20 mg/L PAC was added, 4# 30 mg/L PAC was added, 5# 20 mg/L PAC and 0.2 mg/L palyacrylamide (PAM) were added) for PO43- were 35.0%, 43.9%, 50.4% and 63.6%, respectively. This showed that the higher the PAC concentration was, the better the inhibiting effciency was, and PAM addition strengthened the inhibiting effciency significantly. For Fe2+, the corresponding values of E for the reactors 2#–5# were 22.9%, 47.2%, 34.3% and 46.2%, respectively. The inhibiting effect of PAC and PAM on Mn release remained positive for a relatively short time, about 10 days, and was not so effective as for PO43- and Fe2+. The average effciencies in inhibiting the release of UV254 were 35.3%, 25.9%, 35.5%, 38.9% and 39.5% for reactors 2#–5#, respectively. The inhibiting mechanisms of the agents for different pollutants varied among the conditions and should be studied further.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第12期1977-1982,共6页 环境科学学报(英文版)
基金 supported by the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2009ZX07424-006) the National Natural Science Foundation of China (No. 50830303) the Program for Changjiang Scholars and Innovative Research Team in University of MOE of China (PCSIRT) (No.IRT0853)
关键词 deep reservoir chemical stabilization water lifting aerator (WLA) phosphate release coagulants PAC and PAM deep reservoir chemical stabilization water lifting aerator (WLA) phosphate release coagulants PAC and PAM
  • 相关文献

参考文献3

二级参考文献8

共引文献21

同被引文献38

引证文献5

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部