A simple approach for stability margin of discrete systems
A simple approach for stability margin of discrete systems
摘要
In this paper, a technique is presented to determine the stability margin of the discrete systems using recursive algorithm for power of companion matrix and Gerschgorin Theorem and hence sufficient condition of stability is obtained. The method is illustrated with an example and it is compared with other methods proposed in the literature. The results have applications in the filter design.
In this paper, a technique is presented to determine the stability margin of the discrete systems using recursive algorithm for power of companion matrix and Gerschgorin Theorem and hence sufficient condition of stability is obtained. The method is illustrated with an example and it is compared with other methods proposed in the literature. The results have applications in the filter design.
参考文献17
-
1D. R. Choudhury. Modem Control Engineering. India: Prentice Hall, 2005.
-
2A. Tewari. Modern Control Design. New York: Wiley, 2003.
-
3G. Benke, B. B. Wells. Estimates for the stability of low-pass filters. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(1): 98 - 105.
-
4W. Lu. Design of recursive digital filters with prescribed stability margin: A parameterization approach. 1EEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 1988, 45(9): 1289 - 1298.
-
5J. O. Smith. Introduction to Digital Filters with Audio Applications. New York: Stanford Unversty, 2007.
-
6H. C. Reddy, E K. Ranjan, M. N. S. Swamy. A simple sufficient criterion for the stability of multidimensional filters. Proceedings of IEEE, 1982, 70:301 - 303.
-
7A. Ghafoor, R. N. Iqbal, S. A. Khan. Stability conditions for discrete domain characteristics polynomial. Proceedings of the 7th World Multiconference on Systems, Cybernetics and Informatics. 2003, 15: 98 - 101.
-
8H. Hertz, E. Zeheb. On the stability and instability of n dimensional discrete systems. 1EEE Transactions on Automatic Control, 1986, 31: 872 - 874.
-
9S. Gerschgorin. Ueber die abgrenzung der eigenwerte einer matrix. Izv, Akad. Nauk. SSSR Ser. Mat., 1931, 1:749 - 754.
-
10F. G. Boese, W. J. Luther. A note on a classical bound for the moduli of all zeros of a polynomial. IEEE Transactions on Automatic Control, 1989, 34(9): 998 - 1001.
-
1周霜菊,孙济庆.基于Agent的Web知识过滤器设计[J].计算机与数字工程,2005,33(3):85-89.
-
2赵韬.基于Canvas的图像过滤器设计[J].郧阳师范高等专科学校学报,2015,35(3):53-55.
-
3陆建德.一个新型的Web邮件系统设计[J].计算机工程,2002,28(6):186-189. 被引量:4
-
4肖祥明.泵用过滤器设计[J].石油化工设备技术,1996,17(5):37-39. 被引量:2
-
5吕新南,陈亚男.滤饼理论与过滤器设计的探讨[J].纺织科学研究,1991,2(3):36-38. 被引量:2
-
6李洪波,王宾宾,赵爽,王文茂.三维参数化设计在过滤器设计中的应用[J].过滤与分离,2016,26(4):34-38. 被引量:1
-
7匡胤,黄迪明.基于抗体网络的邮件过滤器设计[J].电子科技大学学报,2006,35(5):811-814. 被引量:2
-
8孔颖.基于HTML卡方算法的垃圾邮件过滤器设计[J].浙江科技学院学报,2010,22(6):525-529.
-
9Dipali Bansal,Munna Khan.Realization of Digital Filter Structures in MATLAB[J].通讯和计算机(中英文版),2011,8(2):150-152.
-
10赵知劲,陈京来.基于Gerschgorin理论稀疏度估计的宽带频谱感知算法[J].计算机应用,2016,36(1):87-90.