期刊文献+

潜堤上破碎波浪传播变形的数值模型及其验证 被引量:3

Numerical model of breaking waves propagating over a submerged breakwater and its laboratory validation
下载PDF
导出
摘要 为模拟潜堤上破碎波浪传播时产生能量的耗散这一特性,在改进的具有四阶色散的Boussinesq水波方程中引入二阶紊动粘性项,建立了考虑波浪破碎的水波数学模型。在非交错网格下建立了有限差分数值模型,并利用三阶Adams-Bashforth格式预报、四阶Adams-Mouton格式校正对数值模型进行求解。通过数值试验,模拟了不同坡度的潜堤上破碎波浪传播变形,并将数值计算波面时间历程与实验结果进行了比较,二者基本吻合,这说明在四阶Boussinesq水波模型中引入二阶粘性项来考虑波浪破碎引起能量耗散的做法是有效的。 To model the breaking waves propagating over a submerged breakwater and consider the energy dissipation by breaking property, the mathematical model for breaking waves was given by adding the second order eddy viscosity terms to the fourth order dispersive Boussinesq equations. Numerical model was established with finite differential method in non-staggered grid, and the model was solved with the third-order Adams-Bashforth predictor and the fourth-order Adams-Moulton Corrector in time marching, Numerical simulations were carded upon breaking wave evolution over a submerged breakwater with different back slopes. The computed surface elevations varying with time history in different locations were compared to experimental data, and the agreement was reasonably satisfactory, and this demonstrated that the present method to consider energy dissipation in Boussinesq wave model was effective.
出处 《海洋通报》 CAS CSCD 北大核心 2011年第6期633-636,667,共5页 Marine Science Bulletin
基金 中国自然科学基金(40902075)
关键词 BOUSSINESQ方程 破碎波 紊动粘性 Boussinesq eqautions breaking waves eddy viscosity
  • 相关文献

参考文献6

  • 1Lin P, Liu P L E A numerical study of breaking waves in the surf zone [J]. J Fluid Mech, 1998, 359: 239-264.
  • 2Schaffer H A, Madsen P A, Deiggard R A. A Boussinesq model for waves breaking in shallow water [J]. Coastal Eng, 1993, 20: 185-202.
  • 3Kennedy A B, Qin C, Kirby J T, et al. Boussinesq Modeling of Wave Transformation, Breaking, and Runup. I: 1D [J]. J Wtrw Port Costal and Oc Eng, 2000, 126(1): 39-47.
  • 4李绍武,李春颖,谷汉斌,时钟.一种改进的近岸波浪破碎数值模型[J].水科学进展,2005,16(1):36-41. 被引量:13
  • 5Svendsen I A, Yu K, Veeramony J. A Boussinesq breaking wave model with vorticity. Proceedings of the 25th International Conference on Coastal Engineering [C]. New York: ASCE, 1996: 1192-1204.
  • 6刘忠波,邹志利,孙昭晨.加强的适合复杂地形的水波方程及其一维数值模型验证[J].海洋学报,2008,30(3):117-125. 被引量:10

二级参考文献34

  • 1陶建华.波浪在岸滩上的爬高和破碎的数学模拟.海洋学报,1984,6(5):692-692.
  • 2Wei G, Kirby J T, Grilli S T, et al. A fully nonlinear Boussinesq model for surface waves. Part 1 : Highly nonlinear unsteady waves[J]. Journal of Fluid Mechanics, 1995, 294. 71 - 92.
  • 3Gobbi M F, Kirby J T. A fourth order Boussinesq-type wave model[A]. Proceedings of the 25th International Conference on Coastal Engineering[C]. New York: ASCE, 1996, 1116- 1129.
  • 4Zou Z L.Higher order Boussinesq equations[J].Ocean Engineering.1999,26:767—792.
  • 5Madsen P A,Bingham H B,Liu H.A new Boussinesq method for fully nonlinear waves from shallow to deep water[J].Joumal of Fluid Mechanics,2002,462:1—30.
  • 6Kobayashi N,Desilva G S.waslon K D.wave transformation and swash zone oscillation on gentle and steep slopes[J].Journal of Geophysical Research.1989,94(C1):951—966.
  • 7Karambas T V, Koutitas C. A breaking wave propagation model based on the Boussinesq equations[J]. Coastal Engineering, 1992, 18:1 - 19.
  • 8Li S, Wang S, Shibayama T. A nearshore wave breaking model[J]. ACTA Oceanologica Sinlca, 1998, 17(1 ):108-118.
  • 9Kennedy A B, Chen Q, Kirby J T. Boussinesq modeling of wave transformation, breaking, and runup. I: 1D[J]. Journal of Waterway, Port,Coastal and Ocean Engineering, 2000, 126( 1 ) : 39 - 47.
  • 10Chen Q, Kirby J T, Dalrymple R A. Boussinesq modeling of wave transformation, breaking, and runup. I: 2D[J]. Journal of Waterway,Port. Coastal and Ocean Engineering, ASCE, 2000, 126(1): 48-56.

共引文献19

同被引文献15

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部